Rhode Island Department of Environmental Management Vegetation Surveys

At Nicholas Farm and Pratt Farm Management Areas

2021 Post-Management Surveys

Report and photographs prepared by: B. Maynard, Ph.D. E. Brown

Introduction

Dr. Brian Maynard and graduate student Emma Brown of the University of Rhode Island have conducted transect studies at Nicholas Farm and Pratt Farm to survey the species present, overall biodiversity, and percent (%) cover of plant species prior to management at each location. The original intent for management was to prescribe controlled burning of the Nicholas Farm property and logging of the Pratt Farm property. Following pre-management vegetation surveys in mid-July of 2020, actual management consisted of logging at both sites within seven of the eight total transects in this study. Both sites had been overwhelmed with *Pinus strobus* (PIST), white pine, at varying stages of growth, as indicated by multiple counts of PIST among all cover classes. The controlled removal of white pine materials was expected to increase accessibility of resources within the ecosystem to increase biodiversity as the plants regrow within each site.

Having collected further data in 2021, the original 2020 survey results have been reformatted and included in this report, facilitating ready comparisons between pre- and post-management survey data.

Contents

Title page	1
Introduction	2
Contents	3
Transect methods and sampling	4
Species list	6
Nicholas Farm	8
Transect Maps	9
Site Photos and Data	10
Data Interpretation	22
Pratt Farm	25
Transect Maps	20
Site Photos and Data	22
Data Interpretation	42
Summary	45
References	46

Transect Methods and Sampling

Four transects were traversed at each site and two types of vegetation surveys were conducted at points along each transect.

Line-Point Intercept Survey

A line-point intercept survey was conducted along each of the transects, 50 meters in length apiece. Eleven points were marked at 5-meter increments, beginning at 0 meters, serving as the points at which data was collected. Data at each point included the presence of each type of plant species found recorded using the USDA abbreviated code for the plants.

Materials:

Garmin GPS Unit 50-meter measuring tape Plumbob measure Recording sheets

Methods:

A starting point was marked on the GPS unit. Coordinates, site description details, and the date were recorded. The tape measure was drawn in 5-meter increments as straight and low to the ground as possible. At each 5-meter point, a vertical measure was used to intersect vegetation. Any vegetation that touched the plumbob was recorded. This process was repeated until reaching 50 meters and was conducted across four different transects at each location for a total of eight transects.

Ground-Point Survey

At every other point of the line-point intercept survey, a ground-point survey of percent coverage of species was taken. Beginning at 0 meters, six points were marked every 10 meters along the 50-meter transect. The plants were assessed by sight for percent coverage of the area and assigned a cover class from 1 to 6.

Cover classes:

1 = <1% cover

2 = 1 - 4% cover

3 = 5 - 24% cover

4= 25-49% cover

5 = 50 - 74% cover

6= 75-100% cover

Due to the overlap in transect data every 10 meters, only a portion of the recorded plants received a cover class designation. Some plants present in all parts of each transect received a variety of cover class ratings. Some received consistent cover class ratings throughout the study.

Materials:

Garmin GPS Unit 50-meter measuring tape Recording sheets

Methods:

A starting point was marked on the GPS Unit. Coordinates, site description details, and the date were recorded. The tape measure was drawn in 10-meter increments as straight and low to the ground as possible. At each 10-meter point, cover class was estimated for each recorded species at the same point in the line-point survey within a visual radius of 5 meters. This process was repeated until reaching 50 meters and was conducted across four different transects at each location for a total of eight transects.

Cover Class

Assessment of site biodiversity and ecological health is based upon the presence of a wide variety of species that fill as many ecological niches as possible. In the case of plants, these niches are typically related to height and thus position in the forest canopy. Forest cover of a biodiverse area should be represented by many species each between the second and fifth cover class, 1-5% and 50-75% cover, respectively, within each tier of height. If there are too many individuals of only one species occupying a particular niche, this indicates that they have been the most successful competitor, suppressing the growth of the other species.

Forest Composition

Forest composition was characterized by defining each species by mature height and relating the quantities present to the forest strata including the forest floor, low, medium, and high understory, and tree canopy. Compositions were used to compare transects before and after management.

Species List

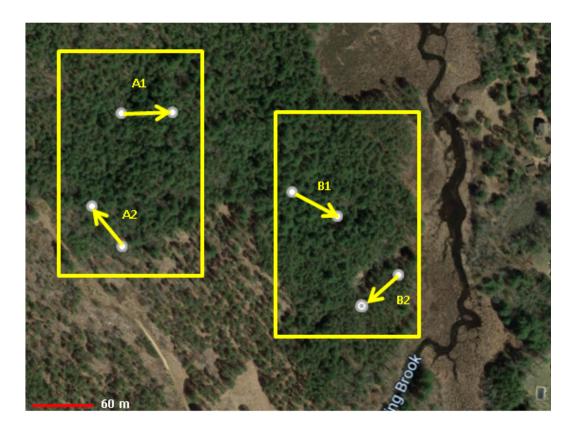
The following is a list of all species found among transects at Nicholas and Pratt Farm Management Areas in the years 2020 and 2021.

Family	Code	Scientific name	
Sapindaceae	ACRU	Acer rubrum (L.)	
Rosaceae	AMCA4	Amelanchier canadensis (L.) Medik	
Apocynaceae	APAN2	Apocynum androsaemifolium (L.)	
Rosaceae	ARME6	Aronia melanocarpa (Michx.) Elliott	
Araliaceae	ARNU2	Aralia nudicaulis (L.)	
Betulaceae	BELE	Betula alleghaniensis Britton	
Betulaceae	BEPO	Betula populifolia Marshall	
Cyperaceae	CA	Carex spp.	
Cyperaceae	CADE5	Carex debilis Michx.	
Cyperaceae	CAPE6	Carex pensylvanica Lam.	
Cyperaceae	CASW	Carex swanii (Fernald) Mack.	
Ericaceae	CHMA3	Chimaphila maculata (L.) Pursh	
Orchidaceae	CYAC3	Cypripedium aucale Aiton / L.	
Lycopodiaceae	DEOB4	Dendrolycopodium obscurum L. A. Haines	
Dennstaedtiaceae	DEPU2	Dennstaedtia punctilobula (Michx.) T. Moore	
Poaceae	DIAC2	Dichanthelium acuminatum (Sw.) Gould & C.A. Clark	
Dryopteridaceae	DRIN5	Dryopteris intermedia (Muhl ex. Willd.) A. Gray	
Dryopteridaceae	DRMA4	Dryopteris marginalis (L.) A. Gray	
Dryopteridaceae	DRYOP	Dryopteris spp. Adans.	
Asteraceae	ERHI12	Erechtites hieraciifolius (L.) Raf. ex DC.	
Fagaceae	FAGR	Fagus grandifolia Ehrh.	
Poaceae	FEOV	Festuca ovina L.	
Cyperaceae	FIAU	Fimbristylis autumnalis (L.) Roem. & Schult.	
Ericaceae	GABA	Gaylussacia baccata (Wangenh.) K. Koch	
Orchidaceae	GOTE	Goodyera tesselata Lodd.	
Primulaceae	LYQU2	Lysimachia quadrifolia (L.)	
Asparagaceae	MACA4	Maianthemum canadense Desf.	
Rubiaceae	MIRE	Mitchella repens L.	
Phytolaccaceae	PHAM4	Phytolacca americana L.	
Pinaceae	PIRI	Pinus rigida Mill.	
Pinaceae	PIST	Pinus strobus L.	
Polytrichaceae	POCO38	Polytrichum commune Hedw.	
Salicaceae	PODE3	Populus deltoides W. Bartram ex Marshall	
Salicaceae	POGR4	Populus grandidentata Michx.	
Poaceae	POPR	Poa pratensis L.	

Continued...

Family	Code	Scientific name
Rosaceae	POSI2	Potentilla simplex Michx.
Rosaceae	PRSE2	Prunus serotina Ehrh.
Fagaceae	QUAL	Quercus alba L.
Fagaceae	QUCO2	Quercus coccinea Münchh.
Fagaceae	QUIL	Quercus ilicifolia Wangenh.
Fagaceae	QURU	Quercus rubra L.
Fagaceae	QUVE	Quercus velutina L.
Rosaceae	RUFL	Rubus flagellaris Willd.
Rosaceae	RUHI	Rubus hispidus L.
Rosaceae	RUOC	Rubus occidentalis L.
Smilacaceae	SMGL	Smilax glauca Walter
Smilacaceae	SMRO	Smilax rotundifolia L.
Anacardiaceae	TORA2	Toxicodendron radicans (L.) Kuntze
Primulaceae	TRBO2	Trientalis borealis Raf.
Ericaceae	VAAN	Vaccinium angustifolium Aiton
Ericaceae	VACO	Vaccinium corymbosum L.
Ericaceae	VAPA4	Vaccinium pallidum Aiton
Violaceae	VI	Viola spp. L.
Adoxaceae	VIDE	Viburnum dentatum L.

Nicholas Farm Management Area


Coventry, Rhode Island

A preliminary scouting trip was conducted on June 18, 2020, by Brian Maynard, Ph.D., and Emma Brown to note the variety of species observed in the general area of the transect. A premanagement survey was conducted on July 14, 2020, to accurately record the species, followed by a post-management vegetation survey conducted one year later on July 19, 2021, by Dr. Brian Maynard.

The area consisted of mature eastern white pine, *Pinus strobus*, with dense leaf litter of white pine needles forming a layer several inches thick serving as a natural mulch, limiting the understory vegetation to sparse herbaceous growth.

Transect Maps

2021 transects use the original GPS survey points from the 2020 surveys. Data collected within these transects use starting points and follow a path as similar as possible to the original transect measurements.

Nicholas Farm Transect A1

NicA1:

Start Lat/Long: 41.68606002/-71.77576999 End Lat/Long: 41.68606689/ -71.77515669 Elevation (m): 112m Azimuth: 89° Aspect: E

Site Description: Xeric/Mesic/Hydric Slope Shape: Concave/Convex/Straight

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

Pre-management:

NicA1

MICAI			
2024	2021	2020	2020
2021	cover	2020	cover
spp.	class	spp.	class
CA	2		
ERHI12	1		
PIRI	3	PIRI	3
PIST	2	PIST	6
PIST	2	PIST	6
		PIST	3
		PIST	6
		PIST	6
		PIST	6
		PRSE2	1
		QUAL	2
		QUIL	2
		QUIL	1
		QUIL	1
QURU	1		
QUVE	1	QUVE	1
		TRBO2	1
VAAN	2	VAAN	2
		VAAN	1
VACO	1		
VACO	1		
VACO	2		

Nicholas Farm Transect A2

NicA2:

Start Lat/Long: 41.68485001/-71.77576999 End Lat/Long: 41.6852137/-71.77613192

Elevation (m): 113m Azimuth: 323° Aspect: NW

Site Description: Xeric/Mesic/Hydric Slope Shape: Concave/Convex/**Straight**

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

Pre-management:

NicA2

NICAZ	2021			
	2021			2020
2021	cover		2020	cover
spp.	class		spp.	class
BEPO	2	2	BEPO	3
			CAPE6	1
			CYAC3	1
DIAC2	1	1		
ERHI12	1	1		
FIAU	4	5		
			GABA	1
PIRI	3	3	PIRI	6
PIST	1	1	PIST	2
			PIST	5
			PIST	1
			PIST	6
			PIST	3
			PIST	6
PODE3	2	2		
			POGR4	3
			QUAL	3
			QUCO2	2
QUIL	1	1	QUIL	1
			QUIL	1
			QUIL	1
QURU		2		
QURU	1	1		
QURU	1	1		
			VAAN	5
			VAAN	1
VACO	2	2		

Nicholas Farm Transect B1

NicB1:

Start Lat/Long: 41.68534731/-71.77368022 End Lat/Long: 41.68512493/ -71.77313296 Elevation (m): NR Azimuth: 119° Aspect: SE

Site Description: Xeric/Mesic/Hydric Slope Shape: Concave/Convex/**Straight**

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

Pre-management:

NicB1

2021	2021 cover	2020	2020 cover
spp.	class	spp.	class
CA	2		
		DRYOP	1
ERHI12	1		
		GABA	2
		GABA	1
PIRI	2		
PIRI	4		
PIST	1	PIST	6
PIST	3	PIST	6
		PIST	6
POPR	1		
		PRSE2	2
		QUAL	2
QURU	1	QURU	1
TRBO2	1		
VAAN	2	VAAN	4
		VAAN	2
		VAAN	3
		VAAN	5
VACO	1		
VACO	1		
VACO	1		

Nicholas Farm Transect B2

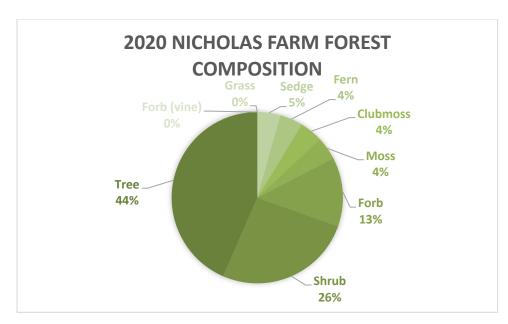
NicB2:

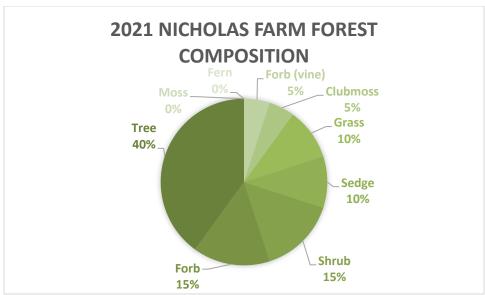
Start Lat/Long: 41.68458371/-71.77236702 End Lat/Long: 41.68430334/ -71.77281763 Elevation (m): NR Azimuth: 230° Aspect: SW

Site Description: Xeric/Mesic/Hydric Slope Shape: Concave/Convex/**Straight**

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

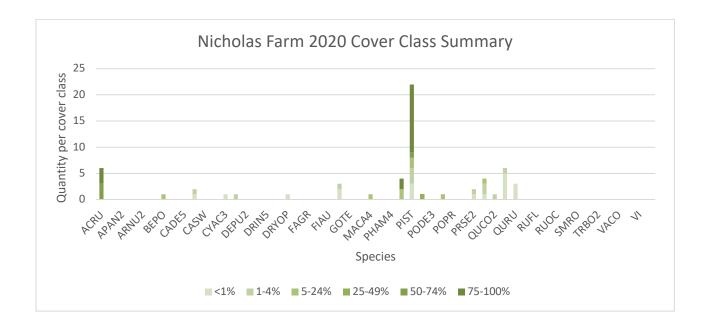
Pre-management:

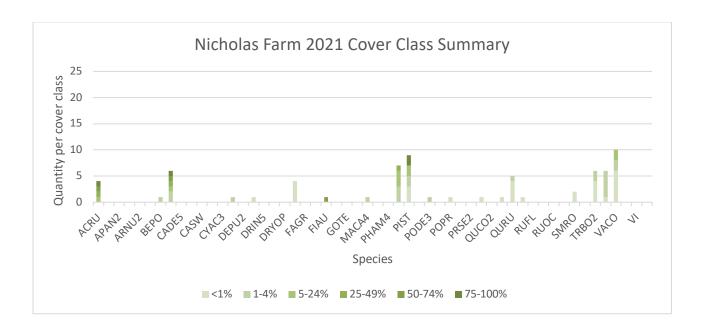

NicB2


NicB2 2021	2021 cover	2020	2020 cover
spp.	class	spp.	class
ACRU	5	ACRU	6
ACRU	4	ACRU	5
ACRU	6	ACRU	5
ACRU	3	ACRU	5
Tierce	3	ACRU	6
		ACRU	6
		CAPE6	2
DEOB4	2	DEOB4	2
ERHI12	1		
MACA4	2	MACA4	3
PIRI	2	PIRI	6
PIRI	3	PIRI	3
PIRI	2		
PIST	6	PIST	2
PIST	6	PIST	1
PIST	3	PIST	1
PIST	1	PIST	2
		POCO38	4
QUAL	1	QUAL	1
		QURU	1
		QURU	1
SMRO	1		
SMRO	1		
TRBO2	2	TRBO2	2
TRBO2	2	TRBO2	2
TRBO2	1	TRBO2	2
TRBO2	1	TRBO2	1
TRBO2	1		
VAAN	1	VAAN	1
VAAN	2	VAAN	1
VAAN	2	VAAN	1
VAAN	2		
VACO	3		
VACO	3		
VACO	1		
		VAPA4	3
		VIDE	2

Data

Forest Composition


The change in percent distribution of vegetation types within the four Nicholas Farm transects is illustrated below.



Cover Class

The proportion of each species per cover class is recorded below. USDA abbreviations represent each species. In the graphs, cover classes are color-coded and the number of individuals per cover class is displayed vertically. In the charts, the total number of individuals in a cover class recorded per species is highlighted in grey.

2020 Cover Classes

Code	<1%	1-4%	5-24%	25-49%	50-74%	75-100%
ACRU	0	0	0	0	3	3
BEPO	0	0	1	0	0	0
CAPE6	1	1	0	0	0	0
CYAC3	1	0	0	0	0	0
DEOB4	0	1	0	0	0	0
DRYOP	1	0	0	0	0	0
GABA	2	1	0	0	0	0
MACA4	0	0	1	0	0	0
PIRI	0	0	2	0	0	2
PIST	3	3	2	0	1	13
POCO38	0	0	0	1	0	0
POGR4	0	0	1	0	0	0
PRSE2	1	1	0	0	0	0
QUAL	1	2	1	0	0	0
QUCO2	0	1	0	0	0	0
QUIL	5	1	0	0	0	0
QURU	3	0	0	0	0	0

2021 Cover Classes

Code	<1%	1-4%	5-24%	25-49%	50-74%	75-100%
ACRU	0	0	1	1	1	1
BEPO	0	1	0	0	0	0
CA	0	2	1	1	1	1
DEOB4	0	1	0	0	0	0
DIAC2	1	0	0	0	0	0
ERHI12	4	0	0	0	0	0
FIAU	0	0	0	0	1	0
MACA4	0	1	0	0	0	0
PIRI	0	3	3	1	0	0
PIST	3	2	2	0	0	2
PODE3	0	1	0	0	0	0
POPR	1	0	0	0	0	0
QUAL	1	0	0	0	0	0
QUIL	1	0	0	0	0	0
QURU	4	1	0	0	0	0
QUVE	1	0	0	0	0	0
SMRO	2	0	0	0	0	0
TRBO2	4	2	0	0	0	0
VAAN	1	5	0	0	0	0
VACO	6	2	2	0	0	0

Data Interpretation

In 2020, 23 different plant species were recorded across the four transects and represented 16 genera and 15 families. In 2021, 20 different plant species were recorded across the four transects, within 15 genera and 13 families.

Quantity of plants recorded per cover class

Cover Class	2020 Quantity	2021 Quantity	Change in Quantity
<1%	18	62	+44
1-4%	11	32	+21
5-24%	8	8	0
25-49%	1	4	+3
50-74%	4	0	-4
75-100%	18	3	-15
SUM	60	69	N/A

Nine species were found across all transects in 2020 and 2021 (BEPO, DEOB4, MACA4, QUAL, ACRU, PIRI, PIST, QUIL, QURU). Eight species were only found in 2020 (CAPE6, CYAC3, DRYOP, GABA, POCO38, POGR4, PRSE2, QUCO2), and eleven species were found specifically in 2021 (CA, DIAC2, ERHI12, FIAU, PODE3, POPR, QUVE, SMRO, TRBO2, VAAN, VACO). The change in species present reflects a successional change that is reflective of management practices applied to the site. Along with the change in cover class greatly increasing individual plants with a cover class of less than 1% within the past year, and a reduced prevalence of PIST occupying larger cover classes, it appears that the management goal of removal of *Pinus strobus* to improve biodiversity is beginning to be achieved. Originally, *Pinus strobus* occupied the greatest number of different cover classes in the greatest quantity. Now, *Acer rubrum* and *Carex* species nearly match the current *Pinus strobus* forest cover.

Individual Plants in Nicholas Farm Transects

Family	Scientific name	Code	2020 Total	2021 Total	Change
Sapindaceae	Acer rubrum (L.)	ACRU	6	4	-2
Rosaceae	Amelanchier canadensis (L.) Medik	AMCA4	0	0	0
Apocynaceae	Apocynum androsaemifolium (L.)	APAN2	0	0	0
Rosaceae	Aronia melanocarpa (Michx.) Elliott	ARME6	0	0	0
Araliaceae	Aralia nudicaulis (L.)	ARNU2	0	0	0
Betulaceae	Betula alleghaniensis Britton	BELE	0	0	0
Betulaceae	Betula populifolia Marshall	BEPO	1	1	0
Cyperaceae	Carex spp.	CA	0	6	6
Cyperaceae	Carex debilis Michx.	CADE5	0	0	0
Cyperaceae	Carex pensylvanica Lam.	CAPE6	2	0	-2
Cyperaceae	Carex swanii (Fernald) Mack.	CASW	0	0	0
Ericaceae	Chimaphila maculata (L.) Pursh	CHMA3	0	0	0
Orchidaceae	Cypripedium aucale Aiton / L.	CYAC3	1	0	-1
Lycopodiaceae	Dendrolycopodium obscurum L. A. Haines	DEOB4	1	1	0
Dennstaedtiacea e	Dennstaedtia punctilobula (Michx.) T. Moore	DEPU2	0	0	0
Poaceae	Dichanthelium acuminatum (Sw.) Gould & C.A. Clark	DIAC2	0	1	1
Dryopteridaceae	Dryopteris intermedia (Muhl ex. Willd.) A. Gray	DRIN5	0	0	0
Dryopteridaceae	Dryopteris marginalis (L.) A. Gray	DRMA4	0	0	0
Dryopteridaceae	Dryopteris spp. Adans.	DRYOP	1	0	-1
Asteraceae	Erechtites hieraciifolius (L.) Raf. ex DC.	ERHI12	0	4	4
Fagaceae	Fagus grandifolia Ehrh.	FAGR	0	0	0
Poaceae	Festuca ovina L.	FEOV	0	0	0
Cyperaceae	Fimbristylis autumnalis (L.) Roem. & Schult.	FIAU	0	1	1
Ericaceae	Gaylussacia baccata (Wangenh.) K. Koch	GABA	3	0	-3
Orchidaceae	Goodyera tesselata Lodd.	GOTE	0	0	0
Primulaceae	Lysimachia quadrifolia (L.)	LYQU2	0	0	0
Asparagaceae	Maianthemum canadense Desf.	MACA4	1	1	0
Rubiaceae	Mitchella repens L.	MIRE	0	0	0
Phytolaccaceae	Phytolacca americana L.	PHAM4	0	0	0
Pinaceae	Pinus rigida Mill.	PIRI	4	7	3
Pinaceae	Pinus strobus L.	PIST	22	9	-13
Polytrichaceae	Polytrichum commune Hedw.	POCO38	1	0	-1

Continued...

Family	Scientific name	Code	2020	2021	Change
-			Total	Total	
Salicaceae	Populus deltoides W. Bartram ex	PODE3	0	1	1
	Marshall				
Salicaceae	Populus grandidentata Michx.	POGR4	1	0	-1
Poaceae	Poa pratensis L.	POPR	0	1	1
Rosaceae	Potentilla simplex Michx.	POSI2	0	0	0
Rosaceae	Prunus serotina Ehrh.	PRSE2	2	0	-2
Fagaceae	Quercus alba L.	QUAL	4	1	-3
Fagaceae	Quercus coccinea Münchh.	QUCO2	1	0	-1
Fagaceae	Quercus ilicifolia Wangenh.	QUIL	6	1	-5
Fagaceae	Quercus rubra L.	QURU	3	5	2
Fagaceae	Quercus velutina L.	QUVE	0	1	1
Rosaceae	Rubus flagellaris Willd.	RUFL	0	0	0
Rosaceae	Rubus hispidus L.	RUHI	0	0	0
Rosaceae	Rubus occidentalis L.	RUOC	0	0	0
Smilacaceae	Smilax glauca Walter	SMGL	0	0	0
Smilacaceae	Smilax rotundifolia L.	SMRO	0	2	2
Anacardiaceae	Toxicodendron radicans (L.) Kuntze	TORA2	0	0	0
Primulaceae	Trientalis borealis Raf.	TRBO2	0	6	6
Ericaceae	Vaccinium angustifolium Aiton	VAAN	0	6	6
Ericaceae	Vaccinium corymbosum L.	VACO	0	10	10
Ericaceae	Vaccinium pallidum Aiton	VAPA4	0	0	0
Violaceae	Viola spp. L.	VI	0	0	0
Adoxaceae	Viburnum dentatum L.	VIDE	0	0	0

Pratt Farm

Arcadia Management Area, Exeter and Richmond, Rhode Island

A preliminary scouting trip was conducted on June 18, 2020 by Brian Maynard, Ph.D., and Emma Brown. A path was traversed through the general area of each transect and all species within sight were recorded in all stages of growth. The site consists of densely forested areas with minimal understory vegetation, and some edge habitat. The soil borders on areas of pine barrens as well as wetlands, with the dense forest mainly on upland slopes. A pre-management survey was conducted on July 15, 2020, followed by a post-management vegetation survey conducted one year later on July 20, 2021, by Dr. Brian Maynard.

Transect Maps

2021 transects use the original GPS survey points from the 2020 surveys. Data collected within these transects use starting points and follow a path as similar as possible to the original transect measurements.

Pratt Farm Transect A1:

PraA1:

Start Lat/Long: 41.55516797/ -71.70727903 (Exeter) End Lat/Long: 41.55510795/ -71.70798462 (Exeter) Elevation (m): 51.5m Azimuth: 264° Aspect: WSW

Site Description: Xeric/Mesic/Hydric Slope Shape: Concave/Convex/Straight

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

Pre-management:

PraA1

2021	2021 cover	2020	2020 cover
spp.	class	spp.	class
		APAN2	1
ARNU2	2	ARNU2	3
ARNU2	3	ARNU2	4
		BELE	6
		CAPE6	2
CADE5	1		
CASW	1		
		CHMA3	1
DRMA4	2		
ERHI12	1		
FEOV	6	FEOV	2
		GOTE	1
MACA4	2	MACA4	2
MACA4	1	MACA4	6
MIRE	2	MIRE	2
		MIRE	2
		MIRE	2
PHAM4	1		
		PIST	2
		PIST	4
		PIST	2
		PIST	6
		PIST	6
		PIST	5
PODE3	2		
PODE3	1		
PODE3	2		
PRSE2	2		
PRSE2	2		
PRSE2	2		
		QUAL	1
		QUAL	1
		QUIL	2
QUVE	1		
QUVE	1		
		RUFL	2
RUHI	1	RUHI	2
TORA2	1	TORA2	1
TORA2	1		
TRBO2	1	TRBO2	1

TRBO2	1	TRBO2	2
VAAN	2	VAAN	2

Pratt Farm Transect A2:

PraA2:

Start Lat/Long: 41.55517601/-71.70650597 (Exeter) End Lat/Long: 41.55560098/ -71.706613 (Exeter) Elevation (m): 57m Azimuth: 349° Aspect: NNW

Site Description: Xeric/Mesic/Hydric Slope Shape: Concave/Convex/Straight

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

Pre-management:

PraA2

PraA2	2021	2020	2020 22222
2021	2021 cover class	2020	2020 cover class
spp.		spp.	
ACRU	1	ACRU	1
ACRU	1	ACRU	1
		ACRU	1
AMCA4	1		
APAN2	1		
		BELE	3
		CAPE6	5
DEPU2	6	DEPU2	4
DEPU2	3		
		FAGR	2
MACA4	2	MACA4	2
MACA4	1	MACA4	2
		MACA4	3
		MACA4	1
		MIRE	2
PIST	4	PIST	6
PIST	3	PIST	3
PIST	2	PIST	4
		PIST	4
		PIST	5
		PIST	6
POSI2	1		
PRSE2	1	PRSE2	1
QUAL	6	QUAL	3
QUAL	1	QUAL	5
QUAL	1	QUAL	4
QUAL	1	QUAL	5
QUVE	1		
RUHI	1	RUHI	3
		RUHI	2
SMGL	1		
SMGL	1		
TORA2	2	TORA2	2
TORA2	1	101412	
TRBO2	1	TRBO2	1
TRBO2	1	TRBO2	2
11002	1	TRBO2	2
		TNDOZ	

		TRBO2	2
		VAAN	2
		VAAN	1
VACO	1	VACO	4
VACO	3	VACO	1
VAPA4	2	VAPA4	3
VAPA4	2	VAPA4	2
		VAPA4	5
		VAPA4	3

Pratt Farm Transect B1:

PraB1:

Start Lat/Long: 41.55502799/ -71.70618704 (Exeter) End Lat/Long: 41.55471903/ -71.70589803 (Richmond)

Elevation (m): 60m Azimuth: 145° Aspect: SE

Site Description: Xeric/Mesic/Hydric Slope Shape: Concave/Convex/Straight

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

Pre-management:

PraB1

2021	2021 cover	2020	2020 cover
spp.	class	spp.	class
ACRU	1		
CA	2		
		CAPE6	5
		CAPE6	6
		CHMA3	1
DEOB4	1		
DEPU2	1	DEPU2	3
FAGR	4	FAGR	6
FAGR	2		
FAGR	4		
		GABA	2
		GABA	1
LYQU2	1		
MACA4	2	MACA4	2
MACA4	2	MACA4	3
MACA4	2	MACA4	2
MIRE	2	MIRE	5
MIRE	1	MIRE	2
		MIRE	1
		MIRE	1
PIST	3	PIST	5
PIST	3	PIST	6
PIST	3	PIST	6
PIST	1	PIST	6
		PIST	6
		PRSE2	2
QUAL	2	QUAL	6
		QUAL	3
		QUCO2	3
SMRO	2	-	
TORA2	1		
TRBO2	1	TRBO2	2
VAAN	2	VAAN	3
VAAN	2		
VAPA4	4	VAPA4	3
VAPA4	1	VAPA4	4

Pratt Farm Transect B2:

PraB2:

Start Lat/Long: 41.55370499/ -71.70616499 (Richmond) End Lat/Long: 41.55416499/ -71.70600398 (Richmond)

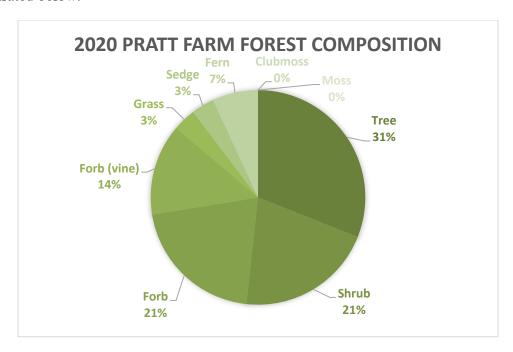
Elevation (m): 60m Azimuth: 15° Aspect: NNE

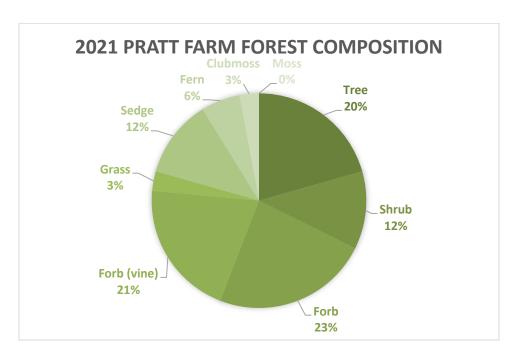
Site Description: Xeric/Mesic/Hydric Slope Shape: **Concave**/Convex/Straight

Landform: Valley bottom/ Lower slope/Midslope/ Upper slope/ Ridgetop

Pre-management:

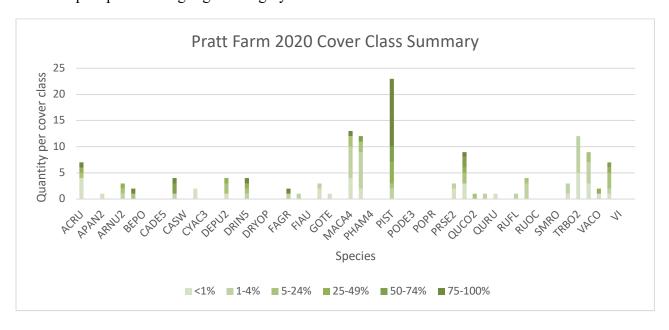
PraB2

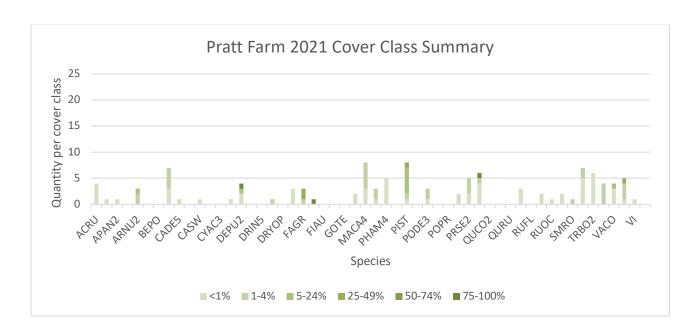

2021	2021 cover	2020	2020 cover
spp.	class	spp.	class
ACRU	1	ACRU	3
ACRO	1	ACRU	6
		ACRU	4
		ACRU	1
		ARNU2	2
CA	2	Microz	2
CA	1		
CA	1		
CA	2		
CA	2		
CA	1		
DEPU2	1	DEPU2	1
		DEPU2	3
		DRIN5	6
		DRIN5	4
		DRIN5	3
		DRIN5	2
ERHI12	1		
ERHI12	1		
		GABA	1
LYQU2	1		
MACA4	1	MACA4	1
		MACA4	2
		MACA4	1
		MACA4	2
		MACA4	1
		MIRE	2
		MIRE	2
		MIRE	3
		MIRE	3
PHAM4	1		
PIST	3	PIST	6
		PIST	4
		PIST	6


		PIST	6
		PIST	6
		PIST	6
POSI2	1		
PRSE2	1	PRSE2	1
QUAL	1	QUAL	1
		QURU	1
RUOC	1		
		RUHI	2
TORA2	2	TORA2	2
TORA2	1		
TRBO2	1	TRBO2	1
		TRBO2	1
		TRBO2	2
		TRBO2	2
		TRBO2	1
VAAN	2	VAAN	1
		VAAN	2
		VAAN	3
		VAAN	1
		VAAN	2
VACO	1		
VACO	1		
VAPA4	2	VAPA4	1
VI	1		

Data

Forest Composition


The change in percent distribution of vegetation types within the four Pratt Farm transects is illustrated below.



Cover Class

The proportion of each species per cover class is recorded below. USDA abbreviations represent each species. In the graphs, cover classes are color-coded and the number of individuals per cover class is displayed vertically. In the charts, the total number of individuals in a cover class recorded per species is highlighted in grey.

2020 Cover Classes

Code	<1%	1-4%	5-24%	25- 49%	50- 74%	75- 100%
APAN2	1	0	0	0	0	0
FEOV	0	1	0	0	0	0
GOTE	1	0	0	0	0	0
QUCO2	0	0	1	0	0	0
QUIL	0	1	0	0	0	0
QURU	1	0	0	0	0	0
RUFL	0	1	0	0	0	0
BELE	0	0	1	0	0	1
CHMA3	2	0	0	0	0	0
FAGR	0	1	0	0	0	1
VACO	1	0	0	1	0	0
ARNU2	0	1	1	1	0	0
GABA	2	1	0	0	0	0
PRSE2	2	1	0	0	0	0
TORA2	1	2	0	0	0	0
CAPE6	0	1	0	0	2	1
DEPU2	1	0	2	1	0	0
DRIN5	0	1	1	1	0	1
RUHI	0	3	1	0	0	0
ACRU	4	0	1	1	0	1
VAPA4	1	1	3	1	1	0
QUAL	3	0	2	1	2	1
VAAN	3	4	2	0	0	0
MIRE	2	7	2	0	1	0
TRBO2	5	7	0	0	0	0
MACA4	4	6	2	0	0	1
PIST	0	2	1	4	3	13

2021 Cover Classes

Code	<1%	1-4%	5-24%	25- 49%	50- 74%	75- 100%
ACRU	4	0	0	0	0	0
AMCA4	1	0	0	0	0	0
APAN2	1	0	0	0	0	0
ARNU2	0	2	1	0	0	0
CA	3	4	0	0	0	0
CADE5	1	0	0	0	0	0
CASW	1	0	0	0	0	0
DEOB4	1	0	0	0	0	0
DEPU2	2	0	1	0	0	1
DRMA4	0	1	0	0	0	0
ERHI12	3	0	0	0	0	0
FAGR	0	1	0	2	0	0
FEOV	0	0	0	0	0	1
LYQU2	2	0	0	0	0	0
MACA4	3	5	0	0	0	0
MIRE	1	2	0	0	0	0
PHAM4	5	0	0	0	0	0
PIST	1	1	5	1	0	0
PODE3	1	2	0	0	0	0
POSI2	2	0	0	0	0	0
PRSE2	2	3	0	0	0	0
QUAL	4	1	0	0	0	1
QUVE	3	0	0	0	0	0
RUHI	2	0	0	0	0	0
RUOC	1	0	0	0	0	0
SMGL	2	0	0	0	0	0
SMRO	0	1	0	0	0	0
TORA2	5	2	0	0	0	0
TRBO2	6	0	0	0	0	0
VAAN	0	4	0	0	0	0
VACO	3	0	1	0	0	0
VAPA4	1	3	0	1	0	0
VI	1	0	0	0	0	0

Data Interpretation

In 2020, 29 species recorded represented 23 genera and 18 families. In 2021, 33 different plant species representing 26 genera and 22 families were recorded across the 4 transects:

Quantity of plants recorded per cover class

Cover Class	2020 Quantity	2021 Quantity	Change in Quantity
<1%	34	62	+28
1-4%	41	32	-9
5-24%	20	8	-12
25-49%	11	4	-7
50-74%	9	0	-9
75-100%	20	3	-17
SUM	135	109	N/A

Seventeen species were found across all transects in 2020 and 2021 (ACRU, APAN2, ARNU2, DEPU2, FAGR, FEOV, MACA4, MIRE, PIST, PRSE2, QUAL, RUHI, TORA2, TRBO2, VAAN, VACO, VAPA4). Ten species were found only in 2020 (BELE, CAPE6, CHMA3, DRIN5, GABA, GOTE, QUCO2, QUIL, QURU, RUFL) and sixteen were found in 2021 (AMCA4, CA, CADE5, CASW, DEOB4, DRMA4, ERHI12, LYQU2, PHAM4, PODE3, POSI2, QUVE, RUOC, SMGL, SMRO, VI). In 2020, the cover class with the most species was the second cover class, with 1-4% cover, while most species in 2021 covered less than 1% of the space within the transects. It is clear that the management of these areas has shifted the cover class ratings within the site, with the greatest change manifesting as a decrease in percent coverage of individual plants that exceeded 75% cover of the transects and increasing the number of individual plants falling within the smallest cover class of less than one percent. These changes reflect the removal of large trees and the utilization of this space by newly sprouted young plants taking advantage of the newly opened space and sunlight conditions. Cover class diagrams show a very large decrease in *Pinus strobus* of higher cover classes. The pie charts of forest composition show a decrease in trees and shrubs with marked increase in forb, vine and sedge presence.

Individual Plants in Pratt Farm Transects

Family	Scientific name	Code	2020 Total	2021 Total	Difference
Sapindaceae	Acer rubrum (L.)	ACRU	7	4	-3
Rosaceae	Amelanchier canadensis (L.) Medik	AMCA4	0	1	1
Apocynaceae	Apocynum androsaemifolium (L.)	APAN2	1	1	0
Rosaceae	Aronia melanocarpa (Michx.) Elliott	ARME6	0	0	0
Araliaceae	Aralia nudicaulis (L.)	ARNU2	3	3	0
Betulaceae	Betula alleghaniensis Britton	BELE	2	0	-2
Betulaceae	Betula populifolia Marshall	BEPO	0	0	0
Cyperaceae	Carex spp.	CA	0	7	7
Cyperaceae	Carex debilis Michx.	CADE5	0	1	1
Cyperaceae	Carex pensylvanica Lam.	CAPE6	4	0	-4
Cyperaceae	Carex swanii (Fernald) Mack.	CASW	0	1	1
Ericaceae	Chimaphila maculata (L.) Pursh	CHMA3	2	0	-2
Orchidaceae	Cypripedium aucale Aiton / L.	CYAC3	0	0	0
Lycopodiaceae	Dendrolycopodium obscurum L. A. Haines	DEOB4	0	1	1
Dennstaedtiaceae	Dennstaedtia punctilobula (Michx.) T. Moore	DEPU2	4	4	0
Poaceae	Dichanthelium acuminatum (Sw.) Gould & C.A. Clark	DIAC2	0	0	0
Dryopteridaceae	Dryopteris intermedia (Muhl ex. Willd.) A. Gray	DRIN5	4	0	-4
Dryopteridaceae	Dryopteris marginalis (L.) A. Gray	DRMA4	0	1	1
Dryopteridaceae	Dryopteris spp. Adans.	DRYOP	0	0	0
Asteraceae	Erechtites hieraciifolius (L.) Raf. ex DC.	ERHI12	0	3	3
Fagaceae	Fagus grandifolia Ehrh.	FAGR	2	3	1
Poaceae	Festuca ovina L.	FEOV	1	1	0
Cyperaceae	Fimbristylis autumnalis (L.) Roem. & Schult.	FIAU	0	0	0
Ericaceae	Gaylussacia baccata (Wangenh.) K. Koch	GABA	3	0	-3
Orchidaceae	Goodyera tesselata Lodd.	GOTE	1	0	-1
Primulaceae	Lysimachia quadrifolia (L.)	LYQU2	0	2	2

Continued...

Family	Scientific name	Code	2020 Total	2021 Total	Difference
Asparagaceae	Maianthemum canadense Desf.	MACA4	13	8	-5
Rubiaceae	Mitchella repens L.	MIRE	12	3	-9
Phytolaccaceae	Phytolacca americana L.	PHAM4	0	5	5
Pinaceae	Pinus rigida Mill.	PIRI	0	0	0
Pinaceae	Pinus strobus L.	PIST	23	8	-15
Polytrichaceae	Polytrichum commune Hedw.	POCO38	0	0	0
Salicaceae	Populus deltoides W. Bartram ex Marshall	PODE3	0	3	3
Salicaceae	Populus grandidentata Michx.	POGR4	0	0	0
Poaceae	Poa pratensis L.	POPR	0	0	0
Rosaceae	Potentilla simplex Michx.	POSI2	0	2	2
Rosaceae	Prunus serotina Ehrh.	PRSE2	3	5	2
Fagaceae	Quercus alba L.	QUAL	9	6	-3
Fagaceae	Quercus coccinea Münchh.	QUCO2	1	0	-1
Fagaceae	Quercus ilicifolia Wangenh.	QUIL	1	0	-1
Fagaceae	Quercus rubra L.	QURU	1	0	-1
Fagaceae	Quercus velutina L.	QUVE	0	3	3
Rosaceae	Rubus flagellaris Willd.	RUFL	1	0	-1
Rosaceae	Rubus hispidus L.	RUHI	4	2	-2
Rosaceae	Rubus occidentalis L.	RUOC	0	1	1
Smilacaceae	Smilax glauca Walter	SMGL	0	2	2
Smilacaceae	Smilax rotundifolia L.	SMRO	0	1	1
Anacardiaceae	Toxicodendron radicans (L.) Kuntze	TORA2	3	7	4
Primulaceae	Trientalis borealis Raf.	TRBO2	12	6	-6
Ericaceae	Vaccinium angustifolium Aiton	VAAN	9	4	-5
Ericaceae	Vaccinium corymbosum L.	VACO	2	4	2
Ericaceae	Vaccinium pallidum Aiton	VAPA4	7	5	-2
Violaceae	Viola spp. L.	VI	0	1	1
Adoxaceae	Viburnum dentatum L.	VIDE	0	0	0

Summary

Data collected at both sites in 2020 affirmed the need for management of the respective areas within Nicholas Farm and Pratt Farm. Both locations had a high concentration of *Pinus strobus* suppressing the growth and potential biodiversity of other species. Nicholas Farm Management Area had previously utilized controlled burning as a management technique in other areas of the site, and Nicholas Farm was intended to receive another controlled burn while Pratt Farm would be logged. Instead, both sites were logged, with Pratt Farm logged in November of 2020 and Nicholas Farm logged in March of 2021. In the initial report, we recommended the comparison of species between managed transects and unmanaged areas of each site once management occurred. This year, a transect of Nicholas Farm was kept unmanaged and contributes knowledge pertaining to the success of management practices.

The comparisons between pre- and post-management data show the beginnings of increase in biodiversity at each site. It is recommended to continue to survey the site in subsequent years to determine the long-term success of catalyzing forest succession through controlled management.

References

Ashton, I. W., Bynum, M. R., Paintner-Green, K., Prowatzke, M., Shepherd, T., Wilson, S. K. 2013. Plant Community Composition and Structure Monitoring at Mount Rushmore National Memorial. Natural Resources Technical Report NPS/NGPN/NRTR-2013/677. National Park Service, Rapid City, SD.

Barton, A. M., and Poulos, H. M. Vegetation Sampling Protocol for Xeric Habitats of the Northeast. Poulos Environmental Consulting, LLC.

Brown, E. and B. Maynard, P.h.D. 2020. Rhode Island Department of Environmental Management Vegetation Surveys at Nicholas Farm and Pratt Farm Management Areas: 2020 Pre-Management Surveys.

Google Maps. https://maps.google.com/.

NCBN Saltmarsh Vegetation Monitoring Protocol Braun-Blanquet Field Form. 2017.

Rocks, E. N., and S. M. Stevens. 2018. Northeast Coastal and Barrier Network Salt Marsh Vegetation Monitoring Protocol Implementation Plan: Standard operating procedures version 1.0. Northeast Coastal and Barrier Network, National Park Service, Kingston, RI.