Anatrutone logan	
Species Distribution Model (SDM) assessment metrics and metadata Common name: Delaware Skipper	fair
Date: 17 Nov 2017	TSS=0.74
Code: anatloga	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 43 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	46
EOs	43
BG points	11473
PR points	2550

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.87	0.17	0.03
Specificity	0.86	0.32	0.05
Sensitivity	0.88	0.10	0.02
TSS	0.74	0.33	0.05
Kappa	0.74	0.33	0.05
AUC	0.94	0.11	0.02

Validation runs used 60 environmental variables, the most important of 89 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 43 validation runs, averaged along cutoffs.

Dist to mafic rock	0
Evergreen forest cover 100-cell mean	· · · · · · · · · · · · · · · · · · ·
Deciduous forest cover 10-cell mean	• • • • • • • • • • • • • • • • • • • •
Water cover 100-cell mean	• • • • • • • • • • • • • • • • • • • •
Dist to acidic granitic rock	· · · · · · · · · · · · · · · · · · ·
Mean temp of wettest quarter	· · · · · · · · · · · · · · · · · · ·
Dist to ultramafic rock	· · · · · · · · · · · · · · · · · · ·
Canopy 1-cell mean	
Precip of driest quarter	• • • • • • • • • • • • • • • • • • • •
Topographic postion index 10-cell radius	· · · · · · · · · · · · · · · · · · ·
Dist to estuary	
Impervious surface 10-cell mean	
Dist to coastal waters	· · · · · · · · · · · · · · · · · · ·
Dist to lake or river	• • • • • • • • • • • • • • • • • • • •
Dist to river	• • • • • • • • • • • • • • • • • • • •
Flowpath dist to water or wetland	· · · · · · · · · · · · · · · · · · ·
Precip of coldest quarter	· · · · · · · · · · · · · · · · · · ·
May precip	
Dist to calc rock	
Dist to salt marsh	
Impervious surface 100-cell mean	· · · · · · · · · · · · · · · · · · ·
Open cover 100-cell mean	
Isothermality	
Total annual precip	
Dist to acidic shale	
Topographic postion index 100-cell radius	
Dist to loam	
Temp annual range	
Canopy 10-cell mean	
Forest cover 10-cell mean	
Dist to lake	
Elevation	
Slope	
Dist to fresh marsh	
Roughness 1–cell square	
Dist to woody wetland	
Dist to sand	
Precip of warmest quarter	
Mean temp of driest quarter	
Dist to silt/clay	
July precip	
June precip	· · · · · · · 0 ⁻ · · · · · · · · · · · · · · · ·
Mean diurnal range	
Water cover 10-cell mean	
Slope length	
Max temp of warmest month	0
Normalized dispersion of precip	
Dist to pond	• • • • • • • • • • • • • • • • • • • •
Solar radiation winter solstice	· · · · 0 · · · · · · · · · · · · · · ·
Dist to inland waters	· · · · 0 · · · · · · · · · · · · · · ·
Forest cover 100-cell mean	
Canopy 100-cell mean	0
Roughness 10-cell circle	0
Wetland cover 100-cell mean	0
Shrub cover 100-cell mean	0
Annual mean temp	0
Mean temp of coldest quarter	0
Dist to moderately calc rock	0
Dist to acidic sedimentary rock	0
Deciduous forest cover 100-cell mean	0
	L
	$\begin{array}{cccc} 18 & 20 & 22 & 24 \\ lower \rightarrow greater \end{array}$

importance

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.588	100(43)	100(46)	99.5	The probability at which the absolute
	0.0000	100(10)	100(10)	00.0	value of sensitivity minus specificity is
					minimized.
F-measure with alpha set to 0.01	0.562	100(43)	100(46)	100	The harmonic average of precision and
					recall (classifying presence points as
					suitable habitat).
Maximum of sensitivity plus	0.562	100(43)	100(46)	100	The probability at which the sum
specificity					of sensitivity (true positive rate) and
					imized.
Minimum Training Presence	0.562	100(43)	100(46)	100	The lowest probability value assigned
					to any of the input presence points.
					100% of input presence points are clas-
Minimum Training Presence by	0.836	100(43)	100(46)	71	The lowest probability value assigned
Element Occurrence	0.000	100(10)	100(10)		to any of the input presence element
					occurrences. This calculation first
					summarizes EOs by their maximum
					and then finds the minimum of these values
Minimum Training Presence by	0.836	100(43)	100(46)	71	The lowest probability value assigned
Polygon			. ,		to any of the input presence polygons.
Tenth percentile of training pres-	0.715	100(43)	100(46)	90	The probability at which 90% of the
ence					input presence points are classified as 10% are classified.
					as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- Pennsylvania Natural Heritage Program
- West Virginia Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2017. Species distribution model for Delaware Skipper (*Anatrytone logan*). Created on 17 Nov 2017. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests.Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- [3] Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.1 (2017-06-30).
 [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Boloria selene myrina Species Distribution Model (SDM) assessment metrics and metadata Common name: Silver-bordered Fritillary TSS=0.85 Date: 30 Jan 2018 Code: bolosele ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 57 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs= element occurrences (known locations); Groups =element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	211
EOs	57
BG points	11473
PR points	13471

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS= True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.93	0.10	0.01
Specificity	0.93	0.21	0.03
Sensitivity	0.92	0.04	0.00
TSS	0.85	0.20	0.03
Kappa	0.85	0.20	0.03
AUC	0.98	0.05	0.01

Validation runs used 60 environmental variables, the most important of 89 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 57 validation runs, averaged along cutoffs.

Dist to fresh marsh	
Dist to woody wetland	• • • • • • • • • • • • • • • • • • • •
Roughness 1–cell square	•••••••••••••••••••••••••••••••••••••••
Dist to ocean	•••••••••••••••••••••••••••••••••••••••
Slope	• • • • • • • • • • • • • • • • • • •
Slope length	• • • • • • • • • • • • • • • • • • • •
Flowpath dist to water or wetland	• • • • • • • • • • • • • • • • • • • •
Max temp of warmest month	· · · · · · · · · · · · · · · · · · ·
Wetland cover 10-cell mean	· · · · · · · · · · · · O · · · · · · ·
Canopy 1-cell mean	· · · · · · · · · · · · O · · · · · ·
Roughness 10-cell circle	• • • • • • • • • • • • • • • • • • • •
Evergreen forest cover 100-cell mean	· · · · · · · · · · · O · · · · · · · ·
Dist to coastal waters	• • • • • • • • • • • • • • • • • • • •
Growing degree days	• • • • • • • • • • • • • • • • • • • •
Topographic postion index 10-cell radius	• • • • • • • • • • • • • • • • • • • •
Open cover 100-cell mean	• • • • • • • • • • • • • • • • • • • •
Precip of driest month	· · · · · · · · · O · · · · · · · ·
Dist to estuary	· · · · · · · · · O · · · · · · · ·
Canopy 10-cell mean	· · · · · · · · · O · · · · · · · ·
Dist to salt marsh	· · · · · · · · · O · · · · · · · · ·
Mean temp of wettest guarter	· · · · · · · · · O · · · · · · · · ·
Annual mean temp	• • • • • • • • • • • • • • • • • • • •
Water cover 100-cell mean	· · · · · · · · O · · · · · · · · · ·
Precip of wettest quarter	· · · · · · · O · · · · · · · · · ·
Canopy 100-cell mean	· · · · · · · O · · · · · · · · · · ·
Precip of coldest quarter	• • • • • • • • • • • • • • • • • • • •
Wetland cover 100-cell mean	• • • • • • • • • • • • • • • • • • • •
Mean temp of coldest quarter	••••••••••••
Impervious surface 100-cell mean	••••••
Topographic moisture	• • • • • • • • • • • • • • • • • • • •
Dist to moderately calc rock	· · · · · · · · · · · · · · · · · · ·
July precip	· · · · · · · · · · · · · · · · · · ·
Elevation	• • • • • • • • • • • • • • • • • • • •
Dist to inland waters	• • • • • • • • • • • • • • • • • • • •
Solar radiation summer solstice	• • • • • • • • • • • • • • • • • • • •
Dist to lake	• • • • • • • • • • • • • • • • • • • •
Dist to calc rock	• • • • • • • • • • • • • • • • • • • •
May precip	•••••
Dist to sand	••••••
Dist to silt/clay	• • • • • • • • • • • • • • • • • • • •
Forest cover 100–cell mean	• • • • • • • • • • • • • • • • • • • •
Roughness 100–cell circle	• • • • • • • • • • • • • • • • • • • •
Open cover 10–cell mean	• • • • • • • • • • • • • • • • • • • •
Normalized dispersion of precip	• • • • • • • • • • • • • • • • • • • •
Deciduous forest cover 100-cell mean	• • • • • • • • • • • • • • • • • • • •
Dist to lake or river	• • • • • • • • • • • • • • • • • • • •
Temp annual range	0
Total annual precip	0
Dist to acidic granitic rock	
Dist to matic rock	0
Deciduous forest cover 10-cell mean	0
lopographic postion index 1-cell square	
Impervious surface 10-cell mean	- 0
Mean diurnal range	0
Prome curvature	2
Dist to acidic shale	
Dist to loan	l õ
Everyieen lorest cover 10-cell mean	
Dist to poidio sodimontory rock	Ğ
Dist to actuic securiterilary TUCK	Ľ
	20 22 24 26 28 lower → greater

importance

good

0

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, $\max = \max \min, \min = \min \max$.

30

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Valuo	FOr	Polys	Dte	Description
	Value	100(57)	$\frac{101ys}{005(010)}$	1 15	
Equal sensitivity and specificity	0.603	100(57)	99.5(210)	98.9	value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.409	100(57)	100(211)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.568	100(57)	100(211)	99.6	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.409	100(57)	100(211)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.900	100(57)	80.1(169)	71.4	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.569	100(57)	100(211)	99.6	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.788	100(57)	96.2(203)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- New Jersey Department of Environmental Protection, Division of Fish and Wildlife, New Jersey Endangered & Nongame Species Program
- Pennsylvania Natural Heritage Program
- West Virginia Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2018. Species distribution model for Silver-bordered Fritillary (*Boloria selene myrina*). Created on 30 Jan 2018. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- [3] Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
 [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing,
- Vienna, Austria. URL https://www.R-project.org/. R version 3.4.3 (2017-11-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liù, Ć., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:3857393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Carterocephalus palaemon Species Distribution Model (SDM) assessment metrics and metadata good Common name: Arctic Skipper TSS=0.98 Date: 18 Nov 2017 ability to find new sites Code: cartpala

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 7 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs= element occurrences (known locations); Groups =element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	12
EOs	7
BG points	11473
PR points	1727

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS= True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.99	0.01	0.00
Specificity	1.00	0.00	0.00
Sensitivity	0.98	0.02	0.01
TSS	0.98	0.01	0.01
Kappa	0.98	0.01	0.01
AUC	1.00	0.00	0.00

Validation runs used 54 environmental variables, the most important of 81 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 1000 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 7 validation runs, averaged along cutoffs.

Wetland cover 10–cell mean Mean temp of coldest quarter	
Mean temp of wettest quarter	
Annual mean temp	
Max temp of warmest month	
Mean temp of driest quarter	
Dist to lake	
June precip	
Growing degree days	
Wetland cover 100-cell mean	
Flevation	·····
Temp seasonality	·····
Total annual precip	······
Impervious surface 100-cell mean	0
Flowpath dist to water or wetland	0
May precip	
Precip of warmest quarter	
Water cover 100-cell mean	0
Dist to inland waters	
Dist to fresh marsh	0
Isothermality	· · · · · · · · · · · · · · · · · · ·
Forest cover 10-cell mean	0
Wetland cover 1-cell mean	0
Topographic postion index 10-cell radius	
Deciduous forest cover 100-cell mean	0
Dist to woody wetland	
Roughness 10-cell circle	· · · · · · · 0 · · · · · ·
Mean diurnal range	
Topographic postion index 100-cell radius	
Forest cover 100-cell mean	
Roughness 1-cell square	
Dist to lake or river	
Deciduous forest cover 10-cell mean	· · · · · 0 · · · · · · · ·
July precip	· · · · · 0 · · · · · · · ·
Canopy 100-cell mean	· · · · · o · · · · · · · ·
Slope	· · · · · o · · · · · · · ·
Dist to silt/clav	
Slope length	
Evergreen forest cover 10-cell mean	0
Dist to acidic sedimentary rock	0
Open cover 100-cell mean	0
Shrub cover 100-cell mean	
Precip of coldest guarter	
Solar radiation winter solstice	
Topographic moisture	
Dist to river	
Dist to pond	0.
Canopy 10-cell mean	
Normalized dispersion of precip	
Dist to moderately calc rock	• • • • • • • • • • • • • • • • • • • •
Deciduous forest cover 1-cell mean	
Canopy 1-cell mean	0
Precip of driest month	0
Dist to stream	0
	8 10 12 lower \rightarrow greater

reater importance

14

16

0

0

o 0

0 0

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, $\max = \max \min, \min = \min \max$.

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.658	100(7)	100(12)	99.8	The probability at which the absolute value of sensitivity minus specificity is minimized
F-measure with alpha set to 0.01	0.635	100(7)	100(12)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.635	100(7)	100(12)	100	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.635	100(7)	100(12)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.985	100(7)	58.3(7)	19.6	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.931	100(7)	100(12)	72.6	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.857	100(7)	100(12)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Error in nrow(sdm.customComments.subset): object 'sdm.customComments.subset' not found

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- New Jersey Department of Environmental Protection, Division of Fish and Wildlife, New Jersey Endangered & Nongame Species Program
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2017. Species distribution model for Arctic Skipper (Carterocephalus palaemon). Created on 18 Nov 2017. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12. 4
- R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing,
- Vienna, Austria. URL https://www.R-project.org/. R version 3.4.1 (2017-06-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Chlosyne harrisii	
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Harris' Checkerspot	good
Date: 30 Jan 2018	TSS=0.81
Code: chloharr	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 55 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	78
EOs	55
BG points	11472
PR points	4480

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.91	0.12	0.02
Specificity	0.94	0.22	0.03
Sensitivity	0.88	0.09	0.01
TSS	0.81	0.24	0.03
Kappa	0.81	0.24	0.03
AUC	0.98	0.05	0.01

Validation runs used 57 environmental variables, the most important of 85 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 55 validation runs, averaged along cutoffs.

Growing degree days	
Canopy 10–cell mean	
Annual mean temp	0
Roughness 1-cell square	· · · · · · · · · · · · · · · · · · ·
Evergreen forest cover 100-cell mean	
Canopy 1-cell mean	
Dist to silt/clay	
Dist to silivitay	
max temp of warmest month	
Dist to woody wetland	0
Dist to fresh marsh	• • • • • • • • • • • • • • • • • • •
Mean temp of wettest quarter	0
Dist to lake	· · · · · · · · · · · · · · · · O · · · ·
Mean temp of coldest quarter	· · · · · · · · · · · · · · · · · · ·
Slope	o
Open cover 100-cell mean	
	, in the second se
Dist to acidic granitic rock	
Topographic postion index 10–cell radius	0
Wetland cover 100–cell mean	·····
Roughness 100–cell circle	0
Precip of coldest guarter	· · · · · · · · · · · · · O · · · · · ·
Dist to mafic rock	0
Topographic postion index 100-cell radius	· · · · · · · · · · · · · · · · · · ·
Canopy 100-cell mean	
Nermelized dispersion of presin	, , , , , , , , , , , , , , , , , , ,
	ő
Temp seasonality	
Dist to lake or river	O
Roughness 10–cell circle	· · · · · · · · · · · O · · · · · · · ·
Precip of driest month	0
Dist to pond	· · · · · · · · · O · · · · · · · · ·
Dist to sand	· · · · · · · · · O · · · · · · · · ·
Isothermality	• • • • • • • • • • • • • • • • • • •
Dist to loam	
Dist to river	· · · · · · · · · · · · · · · · · · ·
Dist to moderately calc rock	
May provin	ŏ
Precip of wettest month	
Mean diurnal range	0
Total annual precip	0
Water cover 100–cell mean	· · · · · · O · · · · · · · · · · · ·
Open cover 10–cell mean	· · · · · · · O · · · · · · · · · · ·
Wetland cover 10-cell mean	· · · · · · O · · · · · · · · · · · ·
Impervious surface 100-cell mean	0
Forest cover 100–cell mean	0
July procip	ŏ
Diat to cale reals	0
Deciduous forest cover 10-cell mean	
Evergreen forest cover 10–cell mean	·····
Dist to acidic shale	•••••
Forest cover 10–cell mean	· · · · O · · · · · · · · · · · · · · ·
Shrub cover 100–cell mean	···· 0 · · · · · · · · · · · · · · · ·
Deciduous forest cover 100-cell mean	· · · · o · · · · · · · · · · · · · · ·
Mean temp of driest quarter	
Solar radiation summer solstice	
Impervious surface 10 coll moon	ام - <u>-</u>
Dist to acidic sodimentary rock	č
Dist to aciulo seulmentary took	Ľ
	20 22 24 26

lower → greater importance

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

0

0

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Equal sensitivity and specificity0.669100(55)100(78)99.4The probability at which the absolute value of sensitivity minus specificity is minimized.F-measure with alpha set to 0.010.529100(55)100(78)100The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).	Threshold	Value	EOs	Polys	Pts	Description
F-measure with alpha set to 0.01 0.529 100(55) 100(78) 100(78) 100 The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).	Equal sensitivity and specificity	0.660	100(55)	$\frac{100(78)}{100(78)}$	99.4	The probability at which the absolute
F-measure with alpha set to 0.01 0.529 100(55) 100(78) 100 The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).	Equal sensitivity and specificity	0.003	100(00)	100(10)	33.4	value of sensitivity minus specificity is
F-measure with alpha set to 0.01 0.529 100(55) 100(78) 100 The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).						minimized.
recall, with strong weighting towards recall (classifying presence points as suitable habitat).	F-measure with alpha set to 0.01	0.529	100(55)	100(78)	100	The harmonic average of precision and
recall (classifying presence points as suitable habitat).						recall, with strong weighting towards
suitable habitat).						recall (classifying presence points as
M_{2}		0.695	100(55)	100(79)	00.2	suitable habitat).
Maximum of sensitivity plus $0.085 + 100(55) + 100(78) + 99.3$ The probability at which the sum specificity of sensitivity (true positive rate) and	specificity	0.085	100(55)	100(78)	99.3	of sensitivity (true positive rate) and
specificity (true positive rate) is max-	specificity					specificity (true pegative rate) is max-
imized.						imized.
Minimum Training Presence $0.529 100(55) 100(78) 100$ The lowest probability value assigned	Minimum Training Presence	0.529	100(55)	100(78)	100	The lowest probability value assigned
to any of the input presence points.						to any of the input presence points.
100% of input presence points are clas-						100% of input presence points are clas-
sified as suitable habitat.		0.000	100/55)	00 5(00)	cc 7	sified as suitable habitat.
Minimum Training Presence by $0.929 = 100(55) = 88.5(69) = 66.7$ The lowest probability value assigned Element Occurrence	Minimum Training Presence by	0.929	100(55)	88.5(69)	66.7	The lowest probability value assigned to any of the input presence element
concurrences This calculation first	Element Occurrence					occurrences This calculation first
summarizes EOs by their maximum						summarizes EOs by their maximum
and then finds the minimum of these						and then finds the minimum of these
values.						values.
Minimum Training Presence by 0.697 100(55) 100(78) 99.1 The lowest probability value assigned	Minimum Training Presence by	0.697	100(55)	100(78)	99.1	The lowest probability value assigned
Polygon to any of the input presence polygons.	Polygon					to any of the input presence polygons.
Tenth percentile of training pres- $0.864 \ 100(55) \ 96.2(75) \ 90$ The probability at which 90% of the	Tenth percentile of training pres-	0.864	100(55)	96.2(75)	90	The probability at which 90% of the
ence input presence points are classified as	ence					suitable babitat and 10% are classified
as unsuitable.						as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- New Jersey Department of Environmental Protection, Division of Fish and Wildlife, New Jersey Endangered & Nongame Species Program
- Pennsylvania Natural Heritage Program
- West Virginia Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2018. Species distribution model for Harris' Checkerspot (*Chlosyne har-risii*). Created on 30 Jan 2018. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- [3] Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
 [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing,
- Vienna, Austria. URL https://www.R-project.org/. R version 3.4.3 (2017-11-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liù, Ć., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Euphyes bimacula	
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Two-spotted Skipper	good
Date: 30 Jan 2018	TSS=0.93
Code: euphbima	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 27 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	28
EOs	27
BG points	11472
PR points	2403

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.97	0.10	0.02
Specificity	0.95	0.19	0.04
Sensitivity	0.98	0.02	0.00
TSS	0.93	0.19	0.04
Kappa	0.93	0.19	0.04
AUC	0.99	0.02	0.00

Validation runs used 58 environmental variables, the most important of 86 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 1000 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 27 validation runs, averaged along cutoffs.

Evergreen forest cover 100-cell mean	
Roughness 10-cell circle	
Dist to fresh marsh	·····o
Slope	· · · · · · · · · · · · · · · · · · ·
Mean temp of wettest quarter	· · · · · · · · · · · · · · · · · · ·
Canopy 1-cell mean	· · · · · · · · · · · · · · · · · · ·
Roughness 1-cell square	·····
Open cover 100-cell mean	· · · · · · · · · · · · · · · · · · ·
Topographic postion index 10-cell radius	· · · · · · · · · · · · · · · · · · ·
Impervious surface 100-cell mean	· · · · · · · · · · · · · · · · · · •
Mean temp of coldest guarter	· · · · · · · · · · · · · · · · · · ·
Annual mean temp	· · · · · · · · · · · · · · · · · · ·
Wetland cover 10-cell mean	· · · · · · · · · · · · · • • • • • • •
Growing degree days	·····
Elevation	· · · · · · · · · · · · · · · · · · ·
Mean temp of warmest guarter	· · · · · · · · · · · · · · · · · · ·
Dist to coastal waters	· · · · · · · · · · · · · · · · · · ·
Dist to woody wetland	· · · · · · · · · · · · • • • • • • • •
Temp annual range	· · · · · · · · · · · · · · · · · · ·
Slope length	· · · · · · · · · · · · o · · · · · ·
Dist to silt/clay	• • • • • • • • • • • • • • • • • • •
Canopy 10-cell mean	0
Isothermality	· · · · · · · · · · · · · · · · · · ·
Flowpath dist to water or wetland	· · · · · · · · · · · · · · · · · · ·
June precip	· · · · · · · · · · · O · · · · · · · ·
Canopy 100-cell mean	· · · · · · · · · · · · · · · · · · ·
Dist to moderately calc rock	0
Dist to inland waters	0
Solar radiation summer solstice	· · · · · · · · · · · · · · · · · · ·
Dist to salt marsh	0
Dist to lake	· · · · · · · · · · · · · · · · · · ·
Dist to estuary	••••••
Forest cover 100-cell mean	· · · · · · · · · 0 · · · · · · · ·
Dist to stream	· · · · · · · · · · · · · · · · · · ·
Topographic moisture	· · · · · · · · O · · · · · · · ·
Mean diurnal range	· · · · · · · · O · · · · · · · · ·
Total annual precip	0
Normalized dispersion of precip	••••••
Dist to calc rock	· · · · · · O · · · · · · · · · ·
Precip of warmest quarter	••••••
Dist to acidic shale	••••••
Open cover 10-cell mean	••••••
Precip of driest quarter	0
Mean temp of driest quarter	•••••
Dist to sand	· · · · · O · · · · · · · · · · ·
July precip	••••••
May precip	•••••
Topographic postion index 100–cell radius	·····
Topographic postion index 1–cell square	·····
Deciduous forest cover 10-cell mean	···· • • • • • • • • • • • • • • • • •
Deciduous forest cover 100-cell mean	0
Dist to acidic sedimentary rock	····•
Dist to lake or river	· · · · O· · · · · · · · · · · · · ·
Deciduous forest cover 1–cell mean	• • • • • • • • • • • • • • • • • • •
Roughness 100-cell circle	••••••••••••••••••••••••••••••••••••••
Precip of coldest quarter	- O
Dist to pond	0
Profile curvature	0
	14 16 18 20 2 lower → greater

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

22

0

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polvs	Pts	Description
Equal sensitivity and specificity	0.631	100(27)	100(28)	99.6	The probability at which the absolute value of sensitivity minus specificity is minimized
F-measure with alpha set to 0.01	0.577	100(27)	100(28)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.672	100(27)	100(28)	99.5	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.577	100(27)	100(28)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.964	100(27)	100(28)	40.7	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.964	100(27)	100(28)	40.7	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.867	100(27)	100(28)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- New Jersev Department of Environmental Protection, Division of Fish and Wildlife, New Jersev Endangered & Nongame Species Program
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2018. Species distribution model for Two-spotted Skipper (Euphyes bimacula). Created on 30 Jan 2018. Western Pennsylvania Conservancy, Pittsburgh, PA.

- Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2]Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests.Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.3 (2017-11-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- ence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Euphyes conspicua	
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Black Dash	good
Date: 09 Dec 2017	TSS=0.86
Code: euphcons	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 76 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	113
EOs	76
BG points	11473
PR points	4432

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.93	0.10	0.01
Specificity	0.93	0.20	0.02
Sensitivity	0.93	0.08	0.01
TSS	0.86	0.21	0.02
Kappa	0.86	0.21	0.02
AUC	0.99	0.03	0.00

Validation runs used 60 environmental variables, the most important of 89 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 76 validation runs, averaged along cutoffs.

Slope Roughness 1–cell square	
Dist to silt/clay	• • • • • • • • • • • • • • • • • • • •
Roughness 10–cell circle	• • • • • • • • • • • • • • • • • • •
Dist to woody wetland	• • • • • • • • • • • • • • • • • • •
Topographic postion index 10–cell radius	0
Canopy 1-cell mean	• • • • • • • • • • • • • • • • • • •
Elevation	• • • • • • • • • • • • • • • • • • •
May precip	0
Temp seasonality	0
Dist to acidic shale	0
Dist to salt marsh	0
Dist to fresh marsh	•••••
Canopy 10-cell mean	-
Precip of driest month	Θ
Mean temp of driest quarter	0
Precip of coldest quarter	0
Topographic postion index 100-cell radius	
Forest cover 100-cell mean	0
Roughness 100-cell circle	0
Slene length	
Slope length	0
Concert 100, coll macon	, in the second s
Evergroop forget gover 100, cell mean	0
Deciduous forest cover 100-cell mean	ő
Deciduous lotest cover 100-cell mean	0
Dist to coostal waters	ő
Dist to estuary	
Dist to lake	
Isothermality	
Normalized dispersion of precip	
Solar radiation summer solstice	
Total annual precip	
Open cover 10-cell mean	
Impervious surface 100-cell mean	· · · · · · · · · · · · · · · · · · ·
Deciduous forest cover 10-cell mean	• • • • • • • • • • • • • • • • • • • •
Mean temp of coldest guarter	
June precip	• • • • • • • • • • • • • • • • • • •
Forest cover 10-cell mean	• • • • • • • • • • • • • • • • • • • •
Growing degree days	• • • • • • • • • • • • • • • • • • • •
Dist to acidic sedimentary rock	• • • • • • • • • • • • • • • • • • • •
Max temp of warmest month	• • • • • • • • • • • • • • • • • • • •
Topographic postion index 1–cell square	0
Mean temp of wettest quarter	•••••
Dist to moderately calc rock	
Impervious surface 10–cell mean	0
Wetland cover 100-cell mean	0
Dist to acidic granitic rock	
Dist to lake or river	
Dist to inland waters	
Dist to malic fock	0
Diet to river	0
Water cover 100, coll mean	0
Dist to loam	
Dist to ultramafic rock	õ
Slope curvature	õ
Dist to stream	o
Profile curvature	o
	Ĺ,,_,
	22 24 26 28 30 lower \rightarrow greater

importance

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polvs	Pts	Description
Equal sensitivity and specificity	0.601	100(76)	100(113)	99	The probability at which the absolute
		<i>.</i>			value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.419	100(76)	100(113)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.613	100(76)	100(113)	98.9	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.419	100(76)	100(113)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.867	100(76)	92(104)	78.2	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.638	100(76)	100(113)	98.3	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.794	100(76)	96.5(109)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2017. Species distribution model for Black Dash (Euphyes conspicua). Created on 09 Dec 2017. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- 4 R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.2 (2017-09-28). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- ence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Euphyes dion	- <mark>-</mark> -
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Dion Skipper	fair
Date: 19 Nov 2017	TSS=0.77
Code: euphdion	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 17 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Wetland cover 10-cell mean

Table 1. Input statistics. Polys = input polygons; EOs= element occurrences (known locations); Groups =element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	22
EOs	17
BG points	11473
PR points	1781

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.88	0.18	0.04
Specificity	0.81	0.37	0.09
Sensitivity	0.95	0.06	0.01
TSS	0.77	0.36	0.09
Kappa	0.77	0.36	0.09
AUC	0.95	0.10	0.02

Validation runs used 60 environmental variables, the most important of 88 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 1000 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 17 validation runs, averaged along cutoffs.

Wetland cover 100-cell mean	
Shrub cover 100-cell mean	
Dist to fresh marsh	
Water cover 100-cell mean	
Wetland cover 1-cell mean	
Flowpath dist to water or wetland	
Topographic moisture	
Dist to loam	
Annual mean temp	
Dist to woody wetland	
Dist to lake	
Isothermality	
Temp annual range	
Dist to calc rock	
Dist to mafic rock	
Slope length	
Dist to silt/clay	
Canopy 10-cell mean	
Topographic postion index 10-cell radius	
lune precip	
Dist to lake or river	ດັ
Impervious surface 100-cell mean	
Max temp of warmest month	
Mean diurnal range	
Dist to acidic granitic rock	
Growing degree days	
Forest cover 10_cell mean	
Mean temp of coldest quarter	
Precip of warmest quarter	
Dist to estuary	
Mean temp of wettest quarter	
Total annual precip	
Canony 1_cell mean	
Roughness 100-cell circle	
Impervious surface 10–cell mean	
Dist to coastal waters	
Slope	
Evergreen forest cover 100–cell mean	· · · · · o · · · · ·
Roughness 1-cell square	
Canopy 100-cell mean	
Dist to sand	· · · · · · · · · · · · · · · · · · ·
Dist to inland waters	· · · · o · · · · ·
Forest cover 1–cell mean	· · · · o · · · · · ·
Open cover 10-cell mean	· · · · o · · · · · ·
Dist to acidic shale	0
Open cover 100-cell mean	0
Precip of coldest guarter	
Dist to moderately calc rock	
Normalized dispersion of precip	
Mean temp of driest guarter	
Deciduous forest cover 10-cell mean	
Roughness 10-cell circle	
Dist to salt marsh	0
Precip of driest quarter	
Deciduous forest cover 1-cell mean	0
Topographic postion index 100-cell radius	
Dist to river	
Solar radiation equinox	0
Open cover 1-cell mean	0
	L,
	12 14 Iower →

→ greater importance

16 18

0

o

0

0

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, $\max = \max \min, \min = \min \max$.

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.654	100(17)	100(22)	98.9	The probability at which the absolute
					minimized.
F-measure with alpha set to 0.01	0.561	100(17)	100(22)	99.9	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.625	100(17)	100(22)	99.7	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.407	100(17)	100(22)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.899	100(17)	95.5(21)	44	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.894	100(17)	100(22)	45.2	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.738	100(17)	100(22)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2017. Species distribution model for Dion Skipper (Euphyes dion). Created on 19 Nov 2017. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- 4 R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.1 (2017-06-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- ence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

air
=0.78 ind new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7] by element occurrence for a total of 134 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs= element occurrences (known locations); Groups =element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	186
EOs	134
BG points	11473
PR points	8300

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.89	0.12	0.01
Specificity	0.93	0.21	0.02
Sensitivity	0.85	0.10	0.01
TSS	0.78	0.23	0.02
Kappa	0.78	0.23	0.02
AUC	0.96	0.10	0.01

Validation runs used 60 environmental variables, the most important of 89 variables (top 75 percent). Each tree was built with 1 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 1, and the same number of environmental variables.

Figure 1. ROC plot for all 134 validation runs, averaged along cutoffs.

Deciduous forest cover 100-cell mean	
Canopy 100-cell mean	
Elevation	
Forest cover 100-cell mean	
Dist to moderately calc rock	0
Dist to lake	0
Impervious surface 10-cell mean	0
Mean temp of coldest guarter	0
Isothermality	
Evergreen forest cover 100-cell mean	
Dist to sand	
Wetland cover 100-cell mean	0
Max temp of warmest month	
Topographic postion index 10, coll radius	, and the second s
Dist to acidic sedimentary rock	
Dist to ultramatic rock	, i i i i i i i i i i i i i i i i i i i
Earoat aguar 10, coll magn	ő
Diet to pand	
	0
Canopy 10-cell mean	
Precip of wettest quarter	0
Solar radiation winter solstice	
Dist to fresh marsh	0
Roughness 10–cell circle	0
June precip	0
Roughness 100–cell circle	0
Mean temp of driest quarter	0
Dist to woody wetland	0
Dist to mafic rock	0
Dist to acidic shale	0
Slope	·····
Dist to loam	O
Dist to estuary	0
Dist to coastal waters	0
Dist to lake or river	0
Dist to silt/clay	••••••••••••••••••••••••••••••••••••••
Impervious surface 100–cell mean	0
July precip	• • • • • • • • • • • • • • • • • • •
May precip	·····
Roughness 1–cell square	••••••••••••••••••••••••••••••••••••••
Mean temp of wettest quarter	0
Annual mean temp	0
Precip of driest month	·····
Dist to salt marsh	0
Open cover 10–cell mean	0
Dist to acidic granitic rock	0
Canopy 1-cell mean	0
Growing degree days	0
Mean diurnal range	0
Dist to stream	0
Flowpath dist to water or wetland	0
Precip of coldest quarter	0
Dist to calc rock	· · · · O · · · · · · · · · · · · · · ·
Normalized dispersion of precip	
Open cover 100-cell mean	
Total annual precip	0
Dist to inland waters	0
Topographic postion index 100-cell radius	0
Slope length	0
Evergreen forest cover 10-cell mean	0
-	$ \sqsubseteq , \ldots , \ldots ,$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ater importance

34 36

0

0

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, $\max = \max \min, \min = \min \max$.

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.479	100(134)	100(186)	96.8	The probability at which the absolute value of sensitivity minus specificity is
F-measure with alpha set to 0.01	0.298	100(134)	100(186)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.485	100(134)	100(186)	96.7	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.226	100(134)	100(186)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.651	100(134)	98.9(184)	86.7	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.622	100(134)	100(186)	89.4	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.616	100(134)	100(186)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- Pennsylvania Natural Heritage Program
- West Virginia Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2017. Species distribution model for Baltimore Checkerspot (*Euphydryas phaeton*). Created on 27 Nov 2017. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests.Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- [3] Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.1 (2017-06-30).
 [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

T . 1	
Lethe eurydice	
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Eyed Brown	good
Date: 01 Feb 2018	TSS=0.91
Code: letheury	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 9 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	12
EOs	9
BG points	11473
PR points	1196

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.96	0.02	0.01
Specificity	0.99	0.03	0.01
Sensitivity	0.92	0.02	0.01
TSS	0.91	0.04	0.01
Kappa	0.91	0.04	0.01
AUC	0.99	0.02	0.01

Validation runs used 57 environmental variables, the most important of 85 variables (top 75 percent). Each tree was built with 1 variables tried at each split (mtry) and 1000 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 1, and the same number of environmental variables.

Figure 1. ROC plot for all 9 validation runs, averaged along cutoffs.

Wetland cover 10-cell mean	
Shrub cover 100-cell mean	
Mean temp of driest guarter	
Wetland cover 100-cell mean	·····
Max temp of warmest month	· · · · · · · · · · · · · · · · · · ·
Dist to fresh marsh	• • • • • • • • • • • • • • • • • • • •
Growing degree days	
June precip	• • • • • • • • • • • • • • • • • • • •
Annual mean temp	•••••••••••••••••••••••••••••••••••••••
Water cover 100-cell mean	• • • • • • • • • • • • • • • • • • • •
Topographic postion index 100-cell radius	· · · · · · · · · · · · · · · · · · ·
Evergreen forest cover 100-cell mean	•••••••••••••••••••••••••••••••••••••••
July precip	0
Min temp of coldest month	0
Wetland cover 1-cell mean	0
Precip of wettest quarter	0
Flowpath dist to water or wetland	0
Solar radiation summer solstice	0
Topographic moisture	
Roughness TU-cell circle	
Slope longth	0
Deciduous forest cover 1_cell mean	
Topographic postion index 10-cell radius	
Dist to mafic rock	
Canopy 100-cell mean	
Dist to river	
Roughness 1-cell square	· · · · · · · · · · · · · · · · · · ·
Dist to acidic granitic rock	· · · · · · · · · · · · · · · · · · ·
Impervious surface 100-cell mean	••••••
Dist to silt/clay	· · · · · · · · · · · · · · · · · · ·
Dist to lake or river	••••••
Normalized dispersion of precip	· · · · · · · · · · · · · · · · · · ·
Dist to acidic shale	• • • • • • • • • • • • • • • • • • • •
Forest cover 10-cell mean	• • • • • • • • • • • • • • • • • • • •
Water cover 10-cell mean	••••••
May precip	•••••
Slope	••••••
Mean diurnal range	0
Beers aspect	0
Forest cover 100-cell mean	·····
Porest cover 1–cell mean	<u> </u>
Deciduous forest cover 100-cell mean	ě.
Dist to lake	ě.
Open cover 10_cell mean	
Canopy 1-cell mean	
Deciduous forest cover 10-cell mean	· · · · · ō. · · · · · · · · · · · ·
Dist to calc rock	· · · · o · · · · · · · · · · · ·
Dist to moderately calc rock	· · · · o · · · · · · · · · · · ·
Dist to acidic sedimentary rock	· · · · · · · · · · · · · · · · · · ·
Roughness 100-cell circle	
Profile curvature	•••
Dist to inland waters	· o · · · · · · · · · · · · · · · · · ·
Topographic postion index 1-cell square	0
Canopy 10-cell mean	0
	L, , , , , ,
	9 10 11 12 13 lower \rightarrow greater

importance

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

14

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polvs	Pts	Description
Equal sensitivity and specificity	0.675	100(9)	100(12)	99.7	The probability at which the absolute value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.603	100(9)	100(12)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.683	100(9)	100(12)	99.7	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.603	100(9)	100(12)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.960	100(9)	100(12)	57.4	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.960	100(9)	100(12)	57.4	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.860	100(9)	100(12)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- New Jersey Department of Environmental Protection, Division of Fish and Wildlife, New Jersey Endangered & Nongame Species Program
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2018. Species distribution model for Eved Brown (Lethe eurydice). Created on 01 Feb 2018. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12. 4
- R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing,
- Vienna, Austria. URL https://www.R-project.org/. R version 3.4.3 (2017-11-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Lycaena epixanthe	-
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Bog Copper	good
Date: 04 Dec 2017	TSS=0.97
Code: lycaepix	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 51 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	61
EOs	51
BG points	11473
PR points	4075

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.98	0.02	0.00
Specificity	0.99	0.03	0.00
Sensitivity	0.98	0.03	0.00
TSS	0.97	0.05	0.01
Kappa	0.97	0.05	0.01
AUC	1.00	0.01	0.00

Validation runs used 56 environmental variables, the most important of 83 variables (top 75 percent). Each tree was built with 1 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 1, and the same number of environmental variables.

Figure 1. ROC plot for all 51 validation runs, averaged along cutoffs.

Topographic postion index 100-cell radius	•••••••••••••••••••••••••••••••••••••••
Dist to woody wetland	•••••••••••••••••••••••••••••••••••••••
Canopy 1–cell mean	•••••••••••••••••••••••••••••••••••••••
Roughness 1–cell square	
Precip of driest month	•••••••••••••••••••••••••••••••••••••••
Open cover 100-cell mean	• • • • • • • • • • • • • • • • • • • •
Slope	•••••••••••••••••••••••••••••••••••••••
Roughness 10-cell circle	· · · · · · · · · · · · · · · · · · ·
Mean diurnal range	· · · · · · · · · · · · · · · · · · ·
Dist to sand	• • • • • • • • • • • • • • • • • • •
Roughness 100-cell circle	· · · · · · · · · · · · · · · · · · ·
Min temp of coldest month	• • • • • • • • • • • • • • • • • • • •
Dist to loam	••••••
Annual mean temp	· · · · · · · · · · · · · · · · · · ·
Max temp of warmest month	
Open cover 10-cell mean	· · · · · · · · · · · · · · · · · · ·
Dist to lake	
Dist to river	ō
Normalized dispersion of precip	
Dist to acidic shale	
Isothermality	
Dist to moderately calc rock	ō
July precip	
Wetland cover 10-cell mean	
Topographic moisture	
Solar radiation winter solstice	
Slope length	
Dist to calc rock	o
Wetland cover 100-cell mean	ō
Temp annual range	·····
Forest cover 10-cell mean	0
Flowpath dist to water or wetland	·····
Precip of coldest quarter	
Canopy 10-cell mean	·····
Topographic postion index 10-cell radius	·····
Canopy 100-cell mean	0
Topographic postion index 1-cell square	
Deciduous forest cover 10-cell mean	• • • • • • • • • • • • • • • • • • • •
Dist to silt/clay	• • • • • • • • • • • • • • • • • • • •
Total annual precip	• • • • • • • • • • • • • • • • • • •
Forest cover 100-cell mean	••••••
Dist to fresh marsh	·····
Deciduous forest cover 100-cell mean	••••••
June precip	••••••
Evergreen forest cover 100-cell mean	••••••
Elevation	••••••
Mean temp of wettest quarter	·····
Impervious surface 100-cell mean	·····
Dist to acidic sedimentary rock	
May precip	••••••
Deciduous forest cover 1–cell mean	· · · · • • • • • • • • • • • • • • • •
Plan curvature	···· 0·····
Slope curvature	····0
Precip of wettest month	0
Dist to lake or river	0
Beers aspect	o
	· · · · · ·
	18 20 22 lower → greater importance

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.624	100(51)	100(61)	99.5	The probability at which the absolute value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.421	100(51)	100(61)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.585	100(51)	100(61)	99.7	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.421	100(51)	100(61)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.947	100(51)	93.4(57)	64.1	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.759	100(51)	100(61)	97.2	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.860	100(51)	98.4(60)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- Pennsylvania Natural Heritage Program
- West Virginia Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2017. Species distribution model for Bog Copper (*Lycaena epixanthe*). Created on 04 Dec 2017. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests.Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- [3] Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.2 (2017-09-28).
 [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 68 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	92
EOs	68
BG points	11473
PR points	7904

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.88	0.14	0.02
Specificity	0.89	0.27	0.03
Sensitivity	0.87	0.09	0.01
TSS	0.76	0.28	0.03
Kappa	0.76	0.28	0.03
AUC	0.94	0.15	0.02

Validation runs used 61 environmental variables, the most important of 90 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 68 validation runs, averaged along cutoffs.

Dist to silt/clay	••••••••••••••••••••••••••••••••••••••
Topographic postion index 100-cell radius	· · · · · · · · · · · · · · · · · · ·
Dist to lake or river	· · · · · · · · · · · · · · · · · · ·
Slope	• • • • • • • • • • • • • • • • • • • •
Precip of driest quarter	· · · · · · · · · · · · · · · · · · ·
Roughness 1-cell square	
Elevation	· · · · · · · · · · · · · · · · · · ·
Dist to fresh marsh	<u> </u>
Dist to calt march	ă IIII
Dist to lake	ă I
Canony 1 coll moon	ő
Drasin of coldect quarter	
Slope length	
Flowpath dist to water or wetland	
Precip of wettest quarter	0
Dist to estuary	0
Dist to inland waters	••••••
May precip	•••••
Water cover 100–cell mean	••••••
Dist to river	· · · · · · · · · · O · · · · · · · · ·
July precip	· · · · · · · · · · · · · · · · · · ·
Dist to loam	· · · · · · · · · O · · · · · · · · · ·
Canopy 10-cell mean	· · · · · · · · · O · · · · · · · · · ·
Evergreen forest cover 100-cell mean	0
Topographic postion index 10-cell radius	
Impervious surface 100-cell mean	
Forest cover 10-cell mean	· · · · · · · · · o · · · · · · · · · ·
Dist to coastal waters	• • • • • • • • • • • • • • • • • • • •
Dist to acidic shale	• • • • • • • • • • • • • • • • • • • •
Mean diurnal range	· · · · · · · O · · · · · · · · · · · ·
Water cover 10-cell mean	· · · · · · · · · · · · · · · · · · ·
Open cover 100–cell mean	· · · · · · · · · · · · · · · · · · ·
Temp annual range	· · · · · · · · · · · · · · · · · · ·
Dist to acidic granitic rock	· · · · · o
Dist to woody wetland	· · · · · o
Wetland cover 10-cell mean	
Forest cover 100–cell mean	
Deciduous forest cover 10-cell mean	
Impervious surface 10-cell mean	· · · · · 0 · · · · · · · · · · · · · ·
June precip	· · · · · o · · · · · · · · · · · · · ·
Deciduous forest cover 100-cell mean	· · · · · o · · · · · · · · · · · · · · · · · ·
Isothermality	0
Roughness 10-cell circle	
Dist to matic rock	0
Solar radiation equinox	
Dist to acidic sedimentary rock	· · · · o
Growing degree days	
Mean temp of wettest quarter	· · · · ō
Total annual precip	
Dist to ocean	
Topographic postion index 1_cell square	
Mean temp of driest quarter	
Min temp of coldest month	
Dist to moderately calc rock	
Shrub cover 100-cell mean	0
Mean temp of warmest quarter	· ō
Wetland cover 100-cell mean	0
Dist to sand	, <u>,</u>
Annual mean temp	
Normalized dispersion of precip	<u>.</u>
Topographic moisture	<u> </u>
	Ľ.,,
	22 24 26 20
	22 24 20 20 30
	importance

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.669	100(68)	100(92)	98.6	The probability at which the absolute value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.367	100(68)	100(92)	99.9	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.674	100(68)	100(92)	98.6	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.291	100(68)	100(92)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.880	100(68)	91.3(84)	77.3	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.684	100(68)	100(92)	98.4	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.818	100(68)	97.8(90)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- New Jersev Department of Environmental Protection, Division of Fish and Wildlife, New Jersev Endangered & Nongame Species Program
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2018. Species distribution model for Bronze Copper (Lycaena hyllus). Created on 01 Feb 2018. Western Pennsylvania Conservancy, Pittsburgh, PA.

- Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2]Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.3 (2017-11-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- ence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Poanes massasoit	
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Mulberry Wing	good
Date: 02 Dec 2017	TSS=0.86
Code: poanmass	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 28 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	39
EOs	28
BG points	11473
PR points	906

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.93	0.11	0.02
Specificity	0.95	0.19	0.04
Sensitivity	0.91	0.08	0.02
TSS	0.86	0.21	0.04
Kappa	0.86	0.21	0.04
AUC	0.99	0.04	0.01

Validation runs used 60 environmental variables, the most important of 89 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 1000 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 28 validation runs, averaged along cutoffs.

Topographic postion index 10-cell radius				· · · · · • • • • • • • • • • • • • • •
Topographic postion index 100-cell radius			••••	
Dist to coastal waters			••••	
Dist to fresh marsh			0.0	
Dist to silt/clay			0	
Dist to estuary		• • • • • • •	6	
Dist to loam		· · · · · · · •		
Dist to salt marsh		• • • • • • •		
Dist to inland waters				
Dist to acidic granitic rock				
Dist to mafic rock				
Dist to moderately calc rock				
Wetland cover 100-cell mean				
Precip of wettest month		0		
Dist to ultramafic rock				
Wetland cover 10-cell mean				
Dist to calc rock				
Impervious surface 100-cell mean				
Evergreen forest cover 100-cell mean				
Topographic postion index 1-cell square				
Dist to acidic shale				
Temp annual range				
Precip of coldest guarter				
Roughness 100-cell circle				
Forest cover 100-cell mean				
Shrub cover 100-cell mean				
Flowpath dist to water or wetland				
Deciduous forest cover 100-cell mean				
May precip				
Total annual precip		• • • • •		
Mean temp of wettest quarter				
Dist to stream		0.00		
Dist to river		0.0		
Roughness 10–cell circle		0		
Elevation		0		
Dist to woody wetland		0		
Dist to lake or river		0		
Mean temp of driest quarter	•••••	3		
Precip of driest quarter	· · · · · · · · · · · · · · · · · · ·			
Water cover 100-cell mean	· · · · · · · · ·	9		
Dist to acidic sedimentary rock	· · · · · c			
Growing degree days	· · · · C)		
Normalized dispersion of precip	• • • • •			
Mean temp of coldest quarter				
July precip	00			
Deciduous forest cover 10-cell mean				
Isothermality				
Dist to sand				
lopographic moisture				
Siope length	0.0			
Appuel mean temp				
Moon diurnal range	~			
Diet to pond	õ			
Moon tomp of warmost quarter	~			
Dist to lake	Ň			
Canony 1_cell mean	Ň			
Canopy 10_cell mean				
lune precip	õ			
Shrub cover 10–cell mean	o			
	Ľ,			
	10 Iov	14 wer \rightarrow	18 greate	¦ ər

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.598	100(28)	97.4(38)	98.6	The probability at which the absolute value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.507	100(28)	100(39)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.535	100(28)	100(39)	99.8	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.507	100(28)	100(39)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.947	100(28)	82.1(32)	56.4	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.554	100(28)	100(39)	99	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.846	100(28)	97.4(38)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2017. Species distribution model for Mulberry Wing (*Poanes massasoit*). Created on 02 Dec 2017. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- 4 R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.2 (2017-09-28). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- ence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Poanes viator viator	-
Common name: Broad-winged Skipper	good
Date: 01 Feb 2018 Code: poanvia1	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7]) by element occurrence for a total of 8 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs = element occurrences (known locations); Groups = element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	18
EOs	8
BG points	11473
PR points	1674

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS = True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Name	Wiean	50	SEM
Overall Accuracy	0.99	0.01	0.00
Specificity	1.00	0.01	0.00
Sensitivity	0.98	0.01	0.00
TSS	0.98	0.01	0.00
Kappa	0.98	0.01	0.00
AUC	1.00	0.00	0.00

Validation runs used 54 environmental variables, the most important of 81 variables (top 75 percent). Each tree was built with 4 variables tried at each split (mtry) and 1000 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 4, and the same number of environmental variables.

Figure 1. ROC plot for all 8 validation runs, averaged along cutoffs.

Wetland cover 10-cell mean	
Wetland cover 100–cell mean	
Topographic moisture	••••••
Temp seasonality	••••••••••••••••••••••••••••••••••••••
Wetland cover 1-cell mean	·····
Slope length	·····
Dist to silt/clay	·····
Slope	······
Solar radiation winter solstice	0.
Roughness 1–cell square	0.
Dist to woody wetland	···· • • • • • • • • • • • • • • • • •
Flowpath dist to water or wetland	····•••••••••••••••••••••••••••••••••
Annual mean temp	· · · · · · · · · · · · · · · · · · ·
June precip	0
Roughness 10–cell circle	0
Min temp of coldest month	·····
Growing degree days	····o···
Topographic postion index 100-cell radius	0
Mean temp of driest quarter	·····
Max temp of warmest month	· · · · · · · · · · · · · · · · · · ·
Open cover 100–cell mean	0
July precip	0
Elevation	0
Deciduous forest cover 100-cell mean	0
Precip of warmest quarter	0
Forest cover 10-cell mean	0
Forest cover 100-cell mean	
Normalized dispersion of precip	0
Shruh sover 100 cell mass	0
Evergreen forest cover 100-cell mean	
Deciduous forest cover 10–cell mean	
Dist to sand	
Mean temp of wettest guarter	
Dist to acidic sedimentary rock	0
Canopy 100-cell mean	·····
Dist to fresh marsh	0
Topographic postion index 10-cell radius	0
Isothermality	0
Forest cover 1–cell mean	·····
Precip of driest quarter	0
May precip	····
Deciduous forest cover 1–cell mean	· · · · 0 · · · · · · · · · · · ·
Mean diurnal range	· · · • • · · · · · · · · · · · · · ·
Dist to moderately calc rock	
Dist to loam	0
Water cover 100-cell mean	0
Iotal annual precip	0
Topographic position index 1-cell square	
Canopy TU-Cell mean	
Siope cuivalure	
Deers aspect	ă
Dist to lake	_
	Ľ
	$\begin{array}{ccc} 4 & 6 & 8 & 12 \\ & \text{lower} \rightarrow \text{greate} \end{array}$

importance

16

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, max = maximum, min = minimum.

0

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.591	100(8)	100(18)	99.6	The probability at which the absolute value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.543	100(8)	100(18)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.543	100(8)	100(18)	100	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.543	100(8)	100(18)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.997	100(8)	50(9)	7.3	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.965	100(8)	100(18)	74.9	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.879	100(8)	100(18)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- Pennsylvania Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2018. Species distribution model for Broad-winged Skipper (Poanes viator viator). Created on 01 Feb 2018. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- [2] Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12.
- [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R version 3.4.3 (2017-11-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation pres-
- ence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.

Polites mystic	
Species Distribution Model (SDM) assessment metrics and metadata	
Common name: Long Dash	fair
Date: 01 Feb 2018	TSS=0.78
Code: polimyst	ability to find new sites

This SDM incorporates the number of known and background locations indicated in Table 1, modeled with the random forests routine [1, 2] in the R statistical environment [3, 4]. We validated the model by jackknifing (also called leave-one-out, see [5, 6, 7] by element occurrence for a total of 51 groups. The statistics in Table 2 report the mean and variance for these jackknifing runs.

Table 1. Input statistics. Polys = input polygons; EOs= element occurrences (known locations); Groups =element occurrence BG points = background points; PR points = presence points placed throughout all polygons.

Name	Number
polys	69
EOs	51
BG points	11473
PR points	4983

Table 2. Validation statistics for jackknife trials. Overall Accuracy = Correct Classification Rate, TSS= True Skill Statistic, AUC = area under the ROC curve; see [8, 9, 6].

Name	Mean	SD	SEM
Overall Accuracy	0.89	0.17	0.02
Specificity	0.85	0.34	0.05
Sensitivity	0.93	0.07	0.01
TSS	0.78	0.34	0.05
Kappa	0.78	0.34	0.05
AUC	0.96	0.10	0.01

Validation runs used 57 environmental variables, the most important of 85 variables (top 75 percent). Each tree was built with 2 variables tried at each split (mtry) and 750 trees built. The final model was built using 2000 trees, all presence and background points, with an mtry of 2, and the same number of environmental variables.

Figure 1. ROC plot for all 51 validation runs, averaged along cutoffs.

Roughness 1–cell square	······
Slope	·····
Mean temp of wettest quarter	0
Evergreen forest cover 100-cell mean	0,
Elevation	••••••••••••••••••••••••••••••••••••••
Dist to woody wetland	0
Canopy 1–cell mean	O
Mean temp of warmest quarter	0
Canopy 10–cell mean	••••••••••••••••••••••••••••••••••••••
Roughness 10–cell circle	••••••••••••••••••••••••••••••••••••••
Normalized dispersion of precip	0 · · · · · · · · · · · · · · · · · · ·
Dist to sand	O
Annual mean temp	••••••••••••••••••••••••••••••••••••••
Growing degree days	·····
Precip of driest month	0
Dist to fresh marsh	0
Dist to mafic rock	O
Min temp of coldest month	O
Forest cover 100-cell mean	·····
mpervious surface 100-cell mean	••••••••••••••••••••••••••••••••••••••
July precip	••••••••••••••••••••••••••••••••••••••
May precip	••••••••••••••••••••••••••••••••••••••
Dist to acidic shale	••••••••••••••••••••••••••••••••••••••
Topographic postion index 10-cell radius	••••••••••••••••••••••••••••••••••••••
Dist to silt/clav	· · · · · · · · · · · · · · · · · · ·
Temp annual range	0
Precip of coldest quarter	0
Solar radiation winter solstice	0
Total annual precip	0
Mean temp of driest quarter	· · · · · · · · · · · · · · · · · · ·
Dist to acidic granitic rock	· · · · · · · · · · · · · · · · · · ·
Open cover 100-cell mean	·····
Canopy 100-cell mean	o
Topographic postion index 100-cell radius	0
Mean diurnal range	0 · · · · · · · · · · · · · · · · · · ·
Deciduous forest cover 10-cell mean	••••••••••••••••••••••••••••••••••••••
Precip of wettest guarter	••••••••••••••••••••••••••••••••••••••
Dist to river	••••••••••••••••••••••••••••••••••••••
Wetland cover 100-cell mean	0
Water cover 100-cell mean	••••••••••••••••••••••••••••••••••••••
Roughness 100-cell circle	••••••••••••••••••••••••••••••••••••••
Dist to calc rock	••••••••••••••••••••••••••••••••••••••
Dist to moderately calc rock	· · · · · · · · · · · · · · · · · · ·
Topographic postion index 1-cell square	••••••••••••••••••••••••••••••••••••••
Shrub cover 100-cell mean	0
Deciduous forest cover 100-cell mean	· · · · · · · · · · · · · · · · · · ·
June precip	0
Dist to lake	0
Dist to lake or river	••••••••••••••••••••••••••••••••••••••
Dist to loam	0
Isothermality	· · · · · O · · · · · · · · · · · · · ·
Slope curvature	· · · · · O · · · · · · · · · · · · · ·
Flowpath dist to water or wetland	· · · · · O · · · · · · · · · · · · · ·
Dist to inland waters	·····
Profile curvature	·····
Forest cover 10-cell mean	0
Dist to pond	0
	$ \sqsubseteq \dots $
	18 22 26 lower → greater importance

Figure 2. Relative importance of each environmental variable based on the full model using all sites as input. Abbreviations used: calc = calcareous, CP = coastal plain, dist = distance, fresh = freshwater, precip = precipitation, temp = temperature, $\max = \max \min, \min = \min \max$.

0

Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Threshold	Value	EOs	Polys	Pts	Description
Equal sensitivity and specificity	0.570	100(51)	98.6(68)	98.7	The probability at which the absolute value of sensitivity minus specificity is minimized.
F-measure with alpha set to 0.01	0.307	100(51)	100(69)	100	The harmonic average of precision and recall, with strong weighting towards recall (classifying presence points as suitable habitat).
Maximum of sensitivity plus specificity	0.582	100(51)	98.6(68)	98.6	The probability at which the sum of sensitivity (true positive rate) and specificity (true negative rate) is max- imized.
Minimum Training Presence	0.279	100(51)	100(69)	100	The lowest probability value assigned to any of the input presence points. 100% of input presence points are clas- sified as suitable habitat.
Minimum Training Presence by Element Occurrence	0.836	100(51)	89.9(62)	83.5	The lowest probability value assigned to any of the input presence element occurrences. This calculation first summarizes EOs by their maximum and then finds the minimum of these values.
Minimum Training Presence by Polygon	0.513	100(51)	100(69)	99.2	The lowest probability value assigned to any of the input presence polygons.
Tenth percentile of training pres- ence	0.773	100(51)	92.8(64)	90	The probability at which 90% of the input presence points are classified as suitable habitat and 10% are classified as unsuitable.

Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in black. The study area is outlined in red.

- Maryland Natural Heritage Program, Maryland Department of Natural Resources, Wildlife and Heritage Service
- New Jersey Department of Environmental Protection, Division of Fish and Wildlife, New Jersey Endangered & Nongame Species Program
- Pennsylvania Natural Heritage Program
- West Virginia Natural Heritage Program

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:

Pennsylvania Natural Heritage Program. 2018. Species distribution model for Long Dash (Polites mystic). Created on 01 Feb 2018. Western Pennsylvania Conservancy, Pittsburgh, PA.

- [1] Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
- Iverson, L. R., A. M. Prasad, and A. Liaw. 2004. New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. Landscape ecology of trees and forests. Proceedings of the twelfth annual IALE (UK) conference, Cirencester, UK, 21-24 June 2004 317-320.
- Liaw, A. and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18-22. Version 4.6-12. [4] R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing,
- Vienna, Austria. URL https://www.R-project.org/. R version 3.4.3 (2017-11-30). [5] Fielding, A. H. and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
- [6] Fielding, A. H. 2002. What are the appropriate characteristics of an accuracy measure? Pages 271-280 in Predicting Species Occurrences, issues of accuracy and scale. J. M. Scott, P. J. Helglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall, F. B. Samson, eds. Island Press, Washington.
- [7] Pearson, R.G. 2007. Species Distribution Modeling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.
- [8] Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43:1223-1232.
- [9] Vaughan, I. P. and S. J. Ormerod. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology 42:720-730.
- [10] Sing, T., O. Sander, N. Beerenwinkel, T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.
- [11] Liù, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385?393.
- [12] Liu, C., G. Newell, and M. White. 2015. On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution 6:337?348.